题目内容
设a,b,c为某三角形三边长,求证:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.
证明:不妨设a≥b≥c.易证a(b+c-a)≤b(c+a-b)≤c(a+b-c).
根据排序原理,得
a2(b+c-a)+b2(c+a-b)+c2(a+b-c)
≤a×b(c+a-b)+b×c(a+b-c)+c×a(b+c-a)≤3abc.
练习册系列答案
相关题目
题目内容
设a,b,c为某三角形三边长,求证:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.
证明:不妨设a≥b≥c.易证a(b+c-a)≤b(c+a-b)≤c(a+b-c).
根据排序原理,得
a2(b+c-a)+b2(c+a-b)+c2(a+b-c)
≤a×b(c+a-b)+b×c(a+b-c)+c×a(b+c-a)≤3abc.