题目内容
已知圆C经过点A(-2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.
(1)求圆C的方程;
(2)若
=-2,求实数k的值;
(3)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.
解:(1)设圆心C(a,a),半径为r.
因为圆C经过点A(-2,0),B(0,2),
所以|AC|=|BC|=r,易得a=0,r=2.
所以圆C的方程是x2+y2=4.
(2)因
为
=2×2×cos
=-2,且
与
的夹角为∠POQ,
所以cos∠POQ=-
,∠POQ=120°,
所以圆心C到直线l:kx-y+1=0的距离d=1,
又d=
,所以
k=0.
(3)设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.
因为直线l,l1都经过点(0,1),且l⊥l1,
根据勾股定理,有d
+d2=1.
又易知|PQ|=2×
,|MN|=2×
,
所以S=
·|PQ|·|MN|,
当且仅当d1=d时,等号成立,所以四边形PMQN面积的最大值为7.
练习册系列答案
相关题目
有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:
|
| 优秀 | 非优秀 | 总计 |
| 甲班 | 10 | b | |
| 乙班 | c | 30 | |
| 总计 |
|
| 105 |
已知在全部105人中随机抽取1人,成绩优秀的概率为
,则下列说法正确的是( )
参考公式:χ2=![]()
附表:
| P(χ2≥k) | 0.050[ | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
A.列联表中c的值为30,b的值为35
B.列联表中c的值为15,b的值为50
C.根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”
D.根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系”