题目内容

3.设数列{an}的前n项和为Sn,且Sn=$\frac{{a}_{n+1}}{2}$-2n-1,已知a1=t,则下列说法正确的是①
①数列{Sn+2n}是等比数列;
②当t≠-2时,数列{an}的通项公式an=2(t+2)•3n-2-2n-1
③若an+1≤an成立,则t的范围是t≤-$\frac{3}{2}$;
④若an+1≥an,则t的最小值是-2.

分析 由已知数列递推式可得${a}_{n+1}=3{a}_{n}+{2}^{n-1}$,然后利用等比数列的定义可得数列{Sn+2n}是等比数列;求出等比数列的通项公式,代入Sn=$\frac{{a}_{n+1}}{2}$-2n-1,可得n≥2时数列{an}的通项公式an=2(t+2)•3n-2-2n-1,验证首项不成立,说明②错误;再利用作差法,化为关于n的函数,可得使an+1≤an成立和使an+1≥an成立的t的取值范围.

解答 解:①∵Sn=$\frac{{a}_{n+1}}{2}$-2n-1
∴$\frac{{S}_{n}+{2}^{n}}{{S}_{n-1}+{2}^{n-1}}=\frac{\frac{{a}_{n+1}}{2}-{2}^{n-1}+{2}^{n}}{\frac{{a}_{n}}{2}-{2}^{n-2}+{2}^{n-1}}$,
∵${S}_{n}-{S}_{n-1}=\frac{{a}_{n+1}}{2}-{2}^{n-1}-\frac{{a}_{n}}{2}+{2}^{n-2}$=$\frac{{a}_{n+1}-{a}_{n}}{2}-{2}^{n-2}$,
∴${a}_{n+1}=3{a}_{n}+{2}^{n-1}$,代入$\frac{{S}_{n}+{2}^{n}}{{S}_{n-1}+{2}^{n-1}}=\frac{\frac{{a}_{n+1}}{2}-{2}^{n-1}+{2}^{n}}{\frac{{a}_{n}}{2}-{2}^{n-2}+{2}^{n-1}}$,
可得$\frac{{S}_{n}+{2}^{n}}{{S}_{n-1}+{2}^{n-1}}=3$,
∴数列{Sn+2n}是等比数列,故①正确;
②∵数列{Sn+2n}是等比数列,且${S}_{1}+{2}^{1}={a}_{1}+2=t+2$,
∴${S}_{n}+{2}^{n}=(t+2)•{3}^{n-1}$,则${S}_{n}=(t+2)•{3}^{n-1}-{2}^{n}$,
${S}_{n-1}=(t+2)•{3}^{n-2}-{2}^{n-1}$(n≥2),
∴当n≥2时,${a}_{n}=2{S}_{n-1}+{2}^{n-1}$=2(t+2)•3n-2-2n+2n-1=2(t+2)•3n-2-2n-1
验证首项不成立,故②不正确;
③${a}_{n}=2(t+2)•{3}^{n-2}-{2}^{n-1}$,${a}_{n+1}=2(t+2)•{3}^{n-1}-{2}^{n}$,
若an+1≤an,则2(t+2)•3n-1-2n-2(t+2)•3n-2+2n-1=4(t+2)•3n-2-2n-1≤0,
即$4(t+2)≤\frac{{2}^{n-1}}{{3}^{n-2}}=2•(\frac{2}{3})^{n-2}$,∴t+2<0,则t<-2,故③错误.
④由③知,an+1≥an,则$4(t+2)≥2•(\frac{2}{3})^{n-2}$,4(t+2)≥3,即t$≥-\frac{5}{4}$,故④错误.
∴说法正确的是①②.
故答案为:①.

点评 本题考查命题的真假判断与应用,考查了数列递推式,考查了等比关系的确定,考查数列的函数特性,考查计算能力,是难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网