题目内容
已知公比为q的等比数列{an}是递减数列,且满足a1+a2+a3=
,a1a2a3=
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{(2n-1)•an}的前n项和Tn.
| 13 |
| 9 |
| 1 |
| 27 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{(2n-1)•an}的前n项和Tn.
分析:(Ⅰ)由a1a2a3=
及等比数列性质得a23=
,可求得a2=
,根据等比数列的通项公式求出数列的首项和公比,然后求数列{an}的通项公式;
(Ⅱ)利用错位相减法可求数列{(2n-1)•an}的前n项和为Tn;
| 1 |
| 27 |
| 1 |
| 27 |
| 1 |
| 3 |
(Ⅱ)利用错位相减法可求数列{(2n-1)•an}的前n项和为Tn;
解答:解:由a1a2a3=
,及等比数列性质得a23=
,解得a2=
,
由a1+a2+a3=
得a1+a3=
由以上得
,
∴
=
,即3q2-10q+3=0,解得q=3,或q=
.
∵{an}是递减数列,故q=3舍去,
∴q=
,由a2=
,得a1=1.
故数列{an}的通项公式为an=
(n∈N*).
(II)由(I)知(2n-1)•an=
,
∴Tn=1+
+
+…+
①,
Tn=
+
++…+
+
②.
①-②得:
Tn=1+
+
+
+…+
-
=1+2(
+
+
+…+
)-
=1+2•
-
=2-
-
,
∴Tn=3-
.
| 1 |
| 27 |
| 1 |
| 27 |
| 1 |
| 3 |
由a1+a2+a3=
| 13 |
| 9 |
| 10 |
| 9 |
由以上得
|
∴
| 1+q2 |
| q |
| 10 |
| 3 |
| 1 |
| 3 |
∵{an}是递减数列,故q=3舍去,
∴q=
| 1 |
| 3 |
| 1 |
| 3 |
故数列{an}的通项公式为an=
| 1 |
| 3n-1 |
(II)由(I)知(2n-1)•an=
| 2n-1 |
| 3n-1 |
∴Tn=1+
| 3 |
| 3 |
| 5 |
| 32 |
| 2n-1 |
| 3n-1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
| 32 |
| 2n-3 |
| 3n-1 |
| 2n-1 |
| 3n |
①-②得:
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 32 |
| 2 |
| 33 |
| 2 |
| 3n-1 |
| 2n-1 |
| 3n |
=1+2(
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n-1 |
| 2n-1 |
| 3n |
=1+2•
| ||||
1-
|
| 2n-1 |
| 3n |
| 1 |
| 3n-1 |
| 2n-1 |
| 3n |
∴Tn=3-
| n+1 |
| 3n-1 |
点评:本题主要考查等比数列的通项公式以及利用错位相减法求数列的和,考查学生的运算求解能力,属中档题.
练习册系列答案
相关题目
已知公比为q的等比数列{an},则数列{an+an+1}( )
| A、一定是等比数列 | B、可能是等比数列,也可能是等差数列 | C、一定是等差数列 | D、一定不是等比数列 |