题目内容
(1)证明:
(2)求二面角
(3)求点
arctan2
,

.解:(Ⅰ)取AC中点D,连结SD、DB.
∵SA=SC,AB=BC,∴AC⊥SD且AC⊥BD,∴AC⊥平面SDB,又SB
平面SDB,
∴AC⊥SB.
(Ⅱ)∵AC⊥平面SDB,AC
平面ABC,∴平面SDB⊥平面ABC.
过N作NE⊥BD于E,NE⊥平面ABC,
过E作EF⊥CM于F,连结NF,
则NF⊥CM.
∴∠NFE为二面角N-CM-B的平面角.
∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.
又∵NE⊥平面ABC,∴NE∥SD.
∵SN=NB,∴NE=
SD=
=
=
,且ED=EB.
在正△ABC中,由平几知识可求得EF=
MB=
,在Rt△NEF中,tan∠NFE=
=2
,∴二面角N—CM—B的大小是arctan2
(Ⅲ)在Rt△NEF中,NF=
=
,
∴S△CMN=
CM·NF=
,S△CMB=
BM·CM=2
.
设点B到平面CMN的距离为h,
∵VB-CMN=VN-CMB,NE⊥平面CMB,∴
S△CMN·h=
S△CMB·NE,
∴h=
=
.即点B到平面CMN的距离为
∴AC⊥SB.
(Ⅱ)∵AC⊥平面SDB,AC
过N作NE⊥BD于E,NE⊥平面ABC,
过E作EF⊥CM于F,连结NF,
则NF⊥CM.
∴∠NFE为二面角N-CM-B的平面角.
∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.
又∵NE⊥平面ABC,∴NE∥SD.
∵SN=NB,∴NE=
在正△ABC中,由平几知识可求得EF=
(Ⅲ)在Rt△NEF中,NF=
∴S△CMN=
设点B到平面CMN的距离为h,
∵VB-CMN=VN-CMB,NE⊥平面CMB,∴
∴h=
练习册系列答案
相关题目