题目内容
10.直三棱柱ABC-A1B1C1的顶点在同一个球面上,AB=3,AC=4,AA1=2$\sqrt{6}$,∠BAC=90°,则球的表面积49π.分析 画出球的内接直三棱ABC-A1B1C1,求出球的半径,然后可求球的表面积.
解答
解:如图,由于∠BAC=90°,连接上下底面外心PQ,O为PQ的中点,OP⊥平面ABC,则球的半径为OB,
由题意,AB=3,AC=4,∠BAC=90°,所以BC=5,
因为AA1=2$\sqrt{6}$,所以OP=$\sqrt{6}$,
所以OB=$\sqrt{6+\frac{25}{4}}$=$\frac{7}{2}$
所以球的表面积为:4π×OB2=49π
故答案为:49π.
点评 本题考查球的体积和表面积,球的内接体问题,考查学生空间想象能力理解失误能力,是基础题.
练习册系列答案
相关题目
5.
在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z=x+ay取得最小值的最优解有无数个,则$\frac{y}{x-a}$的最大值是( )
| A. | $\frac{2}{7}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{4}$ |
20.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题:把100个面包分给5个人,使每个人的所得成等差数列,且使较大的三份之和的$\frac{1}{7}$是较小的两份之和,则最小一份的量为( )
| A. | $\frac{5}{2}$ | B. | $\frac{5}{4}$ | C. | $\frac{5}{3}$ | D. | $\frac{5}{6}$ |