题目内容

13.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象过点B(0,-1),且在($\frac{π}{18}$,$\frac{π}{3}$)上单调,同时f(x)的图象向左平移π个单位之后与原来的图象重合,当x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),且x1≠x2时,f(x1)=f(x2),则f(x1+x2)=(  )
A.-$\sqrt{3}$B.-1C.1D.$\sqrt{3}$

分析 由题意求得φ、ω的值,写出函数f(x)的解析式,求图象的对称轴,得x1+x2的值,再求f(x1+x2)的值.

解答 解:由函数f(x)=2sin(ωx+φ)的图象过点B(0,-1),
∴2sinφ=-1,解得sinφ=-$\frac{1}{2}$,
又|φ|<$\frac{π}{2}$,∴φ=-$\frac{π}{6}$,
∴f(x)=2sin(ωx-$\frac{π}{6}$);
又f(x)的图象向左平移π个单位之后为
g(x)=2sin[ω(x+π)-$\frac{π}{6}$]=2sin(ωx+ωπ-$\frac{π}{6}$),
由两函数图象完全重合知ωπ=2kπ,∴ω=2k,k∈Z;
又$\frac{π}{3}$-$\frac{π}{18}$≤$\frac{T}{2}$=$\frac{π}{ω}$,
∴ω≤$\frac{18}{5}$,∴ω=2;
∴f(x)=2sin(2x-$\frac{π}{6}$),其图象的对称轴为x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z;
当x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),其对称轴为x=-3×$\frac{π}{2}$+$\frac{π}{3}$=-$\frac{7π}{6}$,
∴x1+x2=2×(-$\frac{7π}{6}$)=-$\frac{7π}{3}$,
∴f(x1+x2)=f(-$\frac{7π}{3}$)
=2sin[2×(-$\frac{7π}{3}$)-$\frac{π}{6}$]
=2sin(-$\frac{29π}{6}$)
=-2sin$\frac{29π}{6}$
=-2sin$\frac{5π}{6}$=-1.
应选:B.

点评 本题主要考查了三角函数的图象变换和性质的应用问题,也考查了运算求解能力,是综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网