题目内容

1.将参数方程$\left\{\begin{array}{l}{x=({2}^{t}+{2}^{-t})cosθ}\\{y=({2}^{t}-{2}^{-t})sinθ}\end{array}\right.$(θ 为参数,t 为常数)化为普通方程.

分析 当t=0时,y=0,且-2≤x≤2;当t≠0时,cosθ=$\frac{x}{{2}^{t}+{2}^{-t}}$,sinθ=$\frac{y}{{2}^{t}-{2}^{-t}}$,由此利用同角三角函数关系能求出普通方程.

解答 C.(选修4-4:坐标系与参数方程)
解:∵参数方程$\left\{\begin{array}{l}{x=({2}^{t}+{2}^{-t})cosθ}\\{y=({2}^{t}-{2}^{-t})sinθ}\end{array}\right.$(θ 为参数,t 为常数),
∴当t=0时,y=0,x=2cosθ,即y=0,且-2≤x≤2.…(2分)
当t≠0时,cosθ=$\frac{x}{{2}^{t}+{2}^{-t}}$,sinθ=$\frac{y}{{2}^{t}-{2}^{-t}}$,…(6分)
∴$\frac{{x}^{2}}{({2}^{t}+{2}^{-t})^{2}}+\frac{{y}^{2}}{({2}^{t}-{2}^{-t})^{2}}$=1.…(10分)

点评 本题考查参数方程化为普通方程等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网