题目内容
计算:(1)若数列an=
,求
(a2+a3+a4+…+an);
(2)若函数f(x)=
在R上是连续函数,求a的取值.
| 1 |
| n(n-1) |
| lim |
| n→∞ |
(2)若函数f(x)=
|
分析:(1)由an=
=
-
,知a2+a3+a4+…+an=(1-
)+(
-
)+(
-
)+…+(
-
)=1-
.由此能求出
(a2+a3+a4+…+an).
(2)由函数f(x)=
,知
f(x)=
(a+2x)=a+2,
f(x)=
=
.由f(x)在R上是连续函数,能求出a.
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
| lim |
| n→∞ |
(2)由函数f(x)=
|
| lim |
| x→1- |
| lim |
| x→1- |
| lim |
| x→1+ |
| lim |
| x→1+ |
| ||
| x(x-1) |
| 1 |
| 2 |
解答:解:(1)∵an=
=
-
,
a2+a3+a4+…+an
=(1-
)+(
-
)+(
-
)+…+(
-
)
=1-
.
∴
(a2+a3+a4+…+an)
=
(1-
)
=1.
(2)∵函数f(x)=
,
∴
f(x)=
(a+2x)=a+2,
f(x)=
=
=
=
.
∵f(x)在R上是连续函数,
∴a+2=
,
∴a=-
.
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
a2+a3+a4+…+an
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
=1-
| 1 |
| n |
∴
| lim |
| n→∞ |
=
| lim |
| n→∞ |
| 1 |
| n |
=1.
(2)∵函数f(x)=
|
∴
| lim |
| x→1- |
| lim |
| x→1- |
| lim |
| x→1+ |
| lim |
| x→1+ |
| ||
| x(x-1) |
=
| lim |
| x→1+ |
| ||||
x(
|
=
| lim |
| x→1+ |
| 1 | ||
x(
|
=
| 1 |
| 2 |
∵f(x)在R上是连续函数,
∴a+2=
| 1 |
| 2 |
∴a=-
| 3 |
| 2 |
点评:(1)题考查数列的极限,解题时要注意裂项求和法的灵活运用;(2)题考查函数的连续性,解题时要认真审题,仔细解答.
练习册系列答案
相关题目