题目内容
20.设函数f(x)=x(1+x)n,则${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+4${C}_{n}^{3}$+…+n${C}_{n}^{n-1}$+(n+1)${C}_{n}^{n}$=(n+2)•2n-1.分析 由${kC}_{n}^{k}={nC}_{n-1}^{k-1}$,得${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+4${C}_{n}^{3}$+…+n${C}_{n}^{n-1}$+(n+1)${C}_{n}^{n}$=${C}_{n}^{0}{+C}_{n}^{1}+..{.C}_{n}^{n}$+(${C}_{n}^{1}+{2C}_{n}^{2}+{3C}_{n}^{3}+…{nC}_{n}^{n}$)=${C}_{n}^{0}{+C}_{n}^{1}+..{.C}_{n}^{n}$+n(${C}_{n-1}^{0}{+C}_{n-1}^{1}+..{.C}_{n-1}^{n-1}$)=2n+n•2n-1即可
解答 解:∵${kC}_{n}^{k}={nC}_{n-1}^{k-1}$
∴${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+4${C}_{n}^{3}$+…+n${C}_{n}^{n-1}$+(n+1)${C}_{n}^{n}$=${C}_{n}^{0}{+C}_{n}^{1}+..{.C}_{n}^{n}$+(${C}_{n}^{1}+{2C}_{n}^{2}+{3C}_{n}^{3}+…{nC}_{n}^{n}$)
=${C}_{n}^{0}{+C}_{n}^{1}+..{.C}_{n}^{n}$+n(${C}_{n-1}^{0}{+C}_{n-1}^{1}+..{.C}_{n-1}^{n-1}$)=2n+n•2n-1
=(n+2)•2n-1
故答案为:(n+2)•2n-1
点评 本题考查了${kC}_{n}^{k}={nC}_{n-1}^{k-1}$的应用,即二项式展开式系数之和的应用,属于中档题.
| A. | a>0,b<0 | B. | a>0,b>0 | C. | a<0,b<0 | D. | a<0,b>0 |
| A. | 3 | B. | 123 | C. | 38 | D. | 11 |
| A. | $\frac{π-2}{2π}$ | B. | $\frac{π+2}{π}$ | C. | $\frac{2}{π}$ | D. | $\frac{π+2}{2π}$ |
| A. | [-1,1] | B. | [1,$\frac{5}{4}$] | C. | [-1,$\frac{5}{4}$] | D. | [0,1] |