题目内容

20.设函数f(x)=x(1+x)n,则${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+4${C}_{n}^{3}$+…+n${C}_{n}^{n-1}$+(n+1)${C}_{n}^{n}$=(n+2)•2n-1

分析 由${kC}_{n}^{k}={nC}_{n-1}^{k-1}$,得${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+4${C}_{n}^{3}$+…+n${C}_{n}^{n-1}$+(n+1)${C}_{n}^{n}$=${C}_{n}^{0}{+C}_{n}^{1}+..{.C}_{n}^{n}$+(${C}_{n}^{1}+{2C}_{n}^{2}+{3C}_{n}^{3}+…{nC}_{n}^{n}$)=${C}_{n}^{0}{+C}_{n}^{1}+..{.C}_{n}^{n}$+n(${C}_{n-1}^{0}{+C}_{n-1}^{1}+..{.C}_{n-1}^{n-1}$)=2n+n•2n-1即可

解答 解:∵${kC}_{n}^{k}={nC}_{n-1}^{k-1}$
∴${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+4${C}_{n}^{3}$+…+n${C}_{n}^{n-1}$+(n+1)${C}_{n}^{n}$=${C}_{n}^{0}{+C}_{n}^{1}+..{.C}_{n}^{n}$+(${C}_{n}^{1}+{2C}_{n}^{2}+{3C}_{n}^{3}+…{nC}_{n}^{n}$)
=${C}_{n}^{0}{+C}_{n}^{1}+..{.C}_{n}^{n}$+n(${C}_{n-1}^{0}{+C}_{n-1}^{1}+..{.C}_{n-1}^{n-1}$)=2n+n•2n-1
=(n+2)•2n-1
故答案为:(n+2)•2n-1

点评 本题考查了${kC}_{n}^{k}={nC}_{n-1}^{k-1}$的应用,即二项式展开式系数之和的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网