题目内容
18.设x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y+2≥0}\\{x≤2}\end{array}\right.$,则目标函数z=$\frac{y}{x+1}$的取值范围是( )| A. | [-2,0] | B. | (-∞,-2]∪[0,+∞) | C. | [0,2] | D. | (-∞,0]∪[2,+∞) |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求解即可.
解答
解:作出不等式组约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y+2≥0}\\{x≤2}\end{array}\right.$对应的平面区域如图:z=$\frac{y}{x+1}$
则z的几何意义为区域内的点(-1,0)的斜率,
由图象知z的最小为DB的斜率:0,z的最大值为AD的斜率:$\frac{2-0}{0+1}$=2,
则0≤z≤2,
故选:C.
点评 本题主要考查线性规划和直线斜率的基本应用,利用目标函数的几何意义和数形结合是解决问题的基本方法.
练习册系列答案
相关题目
6.如果ξ~B $({20,\frac{1}{3}})$,则使P(ξ=k)取最大值时的k值为( )
| A. | 5或6 | B. | 6或7 | C. | 7或8 | D. | 以上均错 |
13.
已知函数f(x)和g(x)是两个定义在区间M上的函数,若对任意的x∈M,存在常数x0∈M,使的f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),则称f(x)与g(x)在区间M上是“相似函数”,若f(x)=2x3-3(a+1)x2+6ax+b与g(x)=x+$\frac{4}{x}$在区间[1,3]上是“相似函数”,则a,b的值分别是( )
| A. | a=-2,b=0 | B. | a=-2,b=-2 | C. | a=2,b=0 | D. | a=2,b=-2 |
10.已知x,y满足$\left\{\begin{array}{l}{x≥2}\\{y≥2}\\{x+y≤8}\end{array}\right.$时,z=$\frac{x}{a}$+$\frac{y}{b}$(a≥b>0)的最大值为2,则a+b的最小值为( )
| A. | 4+2$\sqrt{3}$ | B. | 4-2$\sqrt{3}$ | C. | 9 | D. | 8 |
8.给出下列四个命题,其中假命题是( )
| A. | “?x∈R,sinx≤1”的否定为“?x∈R,sinx>1” | |
| B. | “若a>b,则a-5>b-5”的逆否命题是“若a-5≤b-5,则a≤b” | |
| C. | ?x0∈(0,2),使得sinx=1 | |
| D. | ?x∈R,2x-1>0 |