题目内容
如图,已知四棱锥P-ABCD的底面为直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
AB=1,M是PB的中点.
(1)求证:AM=CM;
(2)若N是PC的中点,求证:DN∥平面AMC.
![]()
证明: (1)在直角梯形ABCD中,AD=DC=
AB=1,∴AC=
,BC=
,∴BC⊥AC,
又PA⊥平面ABCD,BC⊂平面ABCD,
∴BC⊥PA,∴BC⊥平面PAC,∴BC⊥PC.
在Rt△PAB中,M为PB的中点,则AM=
PB,
在Rt△PBC中,M为PB的中点,则CM=
PB,∴AM=CM.
![]()
(2)连接DB交AC于点F,
∵DC綊
AB,∴DF=
FB.
取PM的中点G,连接DG,FM,则DG∥FM,
又DG⊄平面AMC,FM⊂平面AMC,
∴DG∥平面AMC.
连接GN,则GN∥MC,
∴GN∥平面AMC,
又GN∩DG=G,
∴平面DNG∥平面AMC.
又DN⊂平面DNG,∴DN∥平面AMC.
练习册系列答案
相关题目