题目内容

已知函数f(x)=2sinωxcosωx+2
3
sin2ωx-
3
(ω>0)的最小正周期是π.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)将函数f(x)的图象向左平移
π
3
个单位,再向上平移1个单位,得到函数y=g(x)的图象,求y=g(x)的解析式及其在[0,
π
2
]上的值域.
考点:三角函数中的恒等变换应用,正弦函数的图象,函数y=Asin(ωx+φ)的图象变换
专题:三角函数的求值
分析:(Ⅰ)利用二倍角三角函数公式和辅助角公式化简,化简函数的解析式,再由三角函数的周期公式求出ω,求出函数的解析式,利用正弦函数的单调区间公式,即可得到单调递增区间;
(II)根据函数图象平移的公式,得出函数g(x)的解析式,求出函数的相位的范围,利用正弦函数的值域求解即可.
解答: 解:(Ⅰ)由题意,得
函数f(x)=2sinωxcosωx+2
3
sin2ωx-
3
=sin2ωx-
3
cos2ωx=2sin(2ωx-
π
3
),函数f(x)ω>0的最小正周期是π,

∴ω=1.
∴f(x)=2sin(2x-
π
3
).
由-
π
2
+2kπ≤2x-
π
3
π
2
+2kπ,k∈Z,
解得kπ-
π
12
≤x≤kπ+
12
,k∈Z.
∴函数f(x)的单调递增区间:[kπ-
π
12
,kπ+
12
]
,k∈Z.
(II)将函数f(x)的图象向左平移
π
3
个单位,再向上平移1个单位,
得到函数y=g(x)=2sin(2x+
π
3
)+1.
∵x∈[0,
π
2
],
∴2x+
π
3
∈[
π
3
3
],
当2x+
π
3
=
π
2
时,即x=
π
12
时,函数取得最大值:3.
当2x+
π
3
=
3
时,即x=
π
2
时,函数取得最小值:1-
3

∴y=g(x)在[0,
π
2
]上的值域为[1-
3
,3].
点评:本题考查两角和与差的三角函数,辅助角公式的应用,三角函数的单调区间以及三角函数的最值的求法,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网