题目内容

3.已知函数$f(x)=\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}}&{x≥3}\\{f(x+1)}&{x<3}\end{array}}\right.$,则f(1)的值是(  )
A.$\frac{1}{12}$B.$\frac{1}{8}$C.24D.12

分析 直接利用分段函数,求解函数值即可.

解答 解:函数$f(x)=\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}}&{x≥3}\\{f(x+1)}&{x<3}\end{array}}\right.$,则f(1)=f(2)=f(3)=$({\frac{1}{2})}^{3}$=$\frac{1}{8}$.
故选:B.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网