题目内容
(1)求证:AE⊥平面A1FD1;
(2)已知G是靠近C1的A1C1的四等分点,求证:EG∥平面A1FD1.
考点:直线与平面平行的判定,直线与平面垂直的判定
专题:空间位置关系与距离
分析:(1)建立空间直角坐标系O-xyz.利用向量法能证明AE⊥平面A1FD1.
(2)由已知条件推导出G(x,y,z)=(
a,
a,a),从而
⊥
,由此能证明EG∥平面A1FD1.
(2)由已知条件推导出G(x,y,z)=(
| 3 |
| 4 |
| 3 |
| 4 |
| AE |
| EG |
解答:
证明:(1)如图所示,建立空间直角坐标系O-xyz.
设正方体的棱长为a.
∵E,F,G分别BB1,CD,A1C1的中点,
∴A(0,0,0),E(a,0,
),A1(0,0,a),
D1(0,a,a),F(
,a,0).…(1分)
∵A(0,0,0),E(a,0,
),∴
=E(a,0,
)-A(0,0,0)=(a,0,
).…(2分)
∵A1(0,0,a),D1(0,a,a),F(
,a,0),
∴
=F(
,a,0)-A1(0,0,a)=(
,a,-a),
=(
,0,-a).…(3分)
∵
•
=(a,0,
)•(
,a,-a)=
+0-
=0,
•
=(a,0,
)•(
,0,-a)=
+0-
=0,
∴
⊥
,
⊥
.…(5分)
∵A1F,D1F是平面A1FD1上的两条相交直线,
∴AE⊥平面A1FD1.…(6分)
(2)∵G是靠近C1的A1C1的四等分点,
∴
=
.…(7分)
设G(x,y,z),
则(x,y,z)-(0,0,a)=
[(a,a,a)-(0,0,a)]=
(a,a,0),
∴G(x,y,z)=(
a,
a,a),
∴
=G(
a,
a,a)-E(a,0,
)=(-
a,
a,
).…(9分)
∴
•
=(a,0,
)•(-
a,
a,
)=-
a2+
a2=0,
∴
⊥
,
∵AE⊥平面A1FD1,且EG不在平面A1FD1内,
∴EG∥平面A1FD1.…(12分)
∵E,F,G分别BB1,CD,A1C1的中点,
∴A(0,0,0),E(a,0,
| a |
| 2 |
D1(0,a,a),F(
| a |
| 2 |
∵A(0,0,0),E(a,0,
| a |
| 2 |
| AE |
| a |
| 2 |
| a |
| 2 |
∵A1(0,0,a),D1(0,a,a),F(
| a |
| 2 |
∴
| A1F |
| a |
| 2 |
| a |
| 2 |
| D1F |
| a |
| 2 |
∵
| AE |
| A1F |
| a |
| 2 |
| a |
| 2 |
| a2 |
| 2 |
| a2 |
| 2 |
| AE |
| D1F |
| a |
| 2 |
| a |
| 2 |
| a2 |
| 2 |
| a2 |
| 2 |
∴
| AE |
| A1F |
| AE |
| D1F |
∵A1F,D1F是平面A1FD1上的两条相交直线,
∴AE⊥平面A1FD1.…(6分)
(2)∵G是靠近C1的A1C1的四等分点,
∴
| A1G |
| 3 |
| 4 |
| A1C1 |
设G(x,y,z),
则(x,y,z)-(0,0,a)=
| 3 |
| 4 |
| 3 |
| 4 |
∴G(x,y,z)=(
| 3 |
| 4 |
| 3 |
| 4 |
∴
| EG |
| 3 |
| 4 |
| 3 |
| 4 |
| a |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
| a |
| 2 |
∴
| AE |
| EG |
| a |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
| a |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
∴
| AE |
| EG |
∵AE⊥平面A1FD1,且EG不在平面A1FD1内,
∴EG∥平面A1FD1.…(12分)
点评:本题考查直线与平面垂直的证明,考查直线与平面平行的证明,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关题目
如图是一个空间几何体的三视图,则该几何体的表面积为( )

A、3+
| ||||
B、6+2
| ||||
C、3+2
| ||||
D、2+
|
正三棱柱ABC-A1B1C1中,AB=2,AA1=
,则三棱锥C-ABC1的体积为( )
| 3 |
| A、1 | ||||
| B、3 | ||||
C、
| ||||
D、
|