ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}{£¨{x+1}£©^2}£¬x¡Ü0\\ \left|{{{log}_2}x}\right|£¬x£¾0\end{array}\right.$£¬Èô·½³Ìf£¨x£©=aÓÐËĸö²»Í¬µÄ½âx1£¬x2£¬x3£¬x4£¬ÇÒx1£¼x2£¼x3£¼x4£¬Ôò${x_3}£¨{{x_1}+{x_2}}£©+\frac{1}{{x_3^2{x_4}}}$µÄȡֵ·¶Î§Îª£¨¡¡¡¡£©| A£® | £¨-1£¬+¡Þ£© | B£® | £¨-1£¬1] | C£® | £¨-¡Þ£¬1£© | D£® | [-1£¬1£© |
·ÖÎö ×÷³öº¯Êýf£¨x£©£¬µÃµ½x1£¬x2¹ØÓÚx=-1¶Ô³Æ£¬x3x4=1£»»¯¼òÌõ¼þ£¬ÀûÓÃÊýÐνáºÏ½øÐÐÇó½â¼´¿É£®
½â´ð
½â£º×÷º¯Êýf£¨x£©µÄͼÏóÈçÓÒ£¬
¡ß·½³Ìf£¨x£©=aÓÐËĸö²»Í¬µÄ½âx1£¬x2£¬x3£¬x4£¬ÇÒx1£¼x2£¼x3£¼x4£¬
¡àx1£¬x2¹ØÓÚx=-1¶Ô³Æ£¬¼´x1+x2=-2£¬
0£¼x3£¼1£¼x4£¬
Ôò|log2x3|=|log2x4|£¬
¼´-log2x3=log2x4£¬
Ôòlog2x3+log2x4=0
¼´log2x3x4=0
Ôòx3x4=1£»
µ±|log2x|=1µÃx=2»ò$\frac{1}{2}$£¬
Ôò1£¼x4¡Ü2£»$\frac{1}{2}$¡Üx3£¼1£»
¹Ê${x_3}£¨{{x_1}+{x_2}}£©+\frac{1}{{x_3^2{x_4}}}$=-2x3+$\frac{1}{{x}_{3}}$£¬$\frac{1}{2}$¡Üx3£¼1£»
Ôòº¯Êýy=-2x3+$\frac{1}{{x}_{3}}$£¬ÔÚ$\frac{1}{2}$¡Üx3£¼1ÉÏΪ¼õº¯Êý£¬
Ôò¹Êx3=$\frac{1}{2}$È¡µÃ×î´óÖµ£¬Îªy=1£¬
µ±x3=1ʱ£¬º¯ÊýֵΪ-1£®
¼´º¯Êýȡֵ·¶Î§ÊÇ£¨-1£¬1]£®
¹ÊÑ¡£ºB
µãÆÀ ±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÔËÓã¬Ö÷Òª¿¼²éº¯ÊýµÄµ¥µ÷ÐÔµÄÔËÓã¬ÔËÓÃÊýÐνáºÏµÄ˼Ïë·½·¨ÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®Ë«ÇúÏß$\frac{{y}^{2}}{4}$-x2=1µÄÒ»Ìõ½¥½üÏߵķ½³ÌΪ£¨¡¡¡¡£©
| A£® | y=2x | B£® | y=4x | C£® | y=$\frac{1}{2}$x | D£® | y=$\frac{1}{4}$x |
9£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-y¡Ü0}\\{x+2y-6¡Ü0}\\{2x+y-3¡Ý0}\end{array}\right.$£¬Ä¿±êº¯Êýz=ax-y½öÔÚ£¨0£¬3£©È¡µÃ×î´óÖµ£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨$\frac{1}{2}$£¬+¡Þ£© | B£® | £¨-2£¬-$\frac{1}{2}$£© | C£® | £¨-¡Þ£¬-$\frac{1}{2}$£© | D£® | £¨-¡Þ£¬-2£© |
19£®Ö±Ïß5x-12y+8=0ÓëÔ²x2+y2-2x=0µÄλÖùØÏµÊÇ£¨¡¡¡¡£©
| A£® | ÏàÀë | B£® | Ïཻ | C£® | ÏàÇÐ | D£® | ÎÞ·¨ÅÐ¶Ï |
4£®Èô¿Õ¼äÏòÁ¿$\overrightarrow{a}$=£¨1£¬-2£¬1£©£¬$\overrightarrow{b}$=£¨1£¬0£¬2£©£¬ÔòÏÂÁÐÏòÁ¿¿É×÷ΪÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$ËùÔÚÆ½ÃæµÄÒ»¸ö·¨ÏòÁ¿µÄÊÇ£¨¡¡¡¡£©
| A£® | £¨4£¬-1£¬2£© | B£® | £¨-4£¬-1£¬2£© | C£® | £¨-4£¬1£¬2£© | D£® | £¨4£¬-1£¬-2£© |