ÌâÄ¿ÄÚÈÝ

14£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}{£¨{x+1}£©^2}£¬x¡Ü0\\ \left|{{{log}_2}x}\right|£¬x£¾0\end{array}\right.$£¬Èô·½³Ìf£¨x£©=aÓÐËĸö²»Í¬µÄ½âx1£¬x2£¬x3£¬x4£¬ÇÒx1£¼x2£¼x3£¼x4£¬Ôò${x_3}£¨{{x_1}+{x_2}}£©+\frac{1}{{x_3^2{x_4}}}$µÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨-1£¬+¡Þ£©B£®£¨-1£¬1]C£®£¨-¡Þ£¬1£©D£®[-1£¬1£©

·ÖÎö ×÷³öº¯Êýf£¨x£©£¬µÃµ½x1£¬x2¹ØÓÚx=-1¶Ô³Æ£¬x3x4=1£»»¯¼òÌõ¼þ£¬ÀûÓÃÊýÐνáºÏ½øÐÐÇó½â¼´¿É£®

½â´ð ½â£º×÷º¯Êýf£¨x£©µÄͼÏóÈçÓÒ£¬
¡ß·½³Ìf£¨x£©=aÓÐËĸö²»Í¬µÄ½âx1£¬x2£¬x3£¬x4£¬ÇÒx1£¼x2£¼x3£¼x4£¬
¡àx1£¬x2¹ØÓÚx=-1¶Ô³Æ£¬¼´x1+x2=-2£¬
0£¼x3£¼1£¼x4£¬
Ôò|log2x3|=|log2x4|£¬
¼´-log2x3=log2x4£¬
Ôòlog2x3+log2x4=0
¼´log2x3x4=0
Ôòx3x4=1£»
µ±|log2x|=1µÃx=2»ò$\frac{1}{2}$£¬
Ôò1£¼x4¡Ü2£»$\frac{1}{2}$¡Üx3£¼1£»
¹Ê${x_3}£¨{{x_1}+{x_2}}£©+\frac{1}{{x_3^2{x_4}}}$=-2x3+$\frac{1}{{x}_{3}}$£¬$\frac{1}{2}$¡Üx3£¼1£»
Ôòº¯Êýy=-2x3+$\frac{1}{{x}_{3}}$£¬ÔÚ$\frac{1}{2}$¡Üx3£¼1ÉÏΪ¼õº¯Êý£¬
Ôò¹Êx3=$\frac{1}{2}$È¡µÃ×î´óÖµ£¬Îªy=1£¬
µ±x3=1ʱ£¬º¯ÊýֵΪ-1£®
¼´º¯Êýȡֵ·¶Î§ÊÇ£¨-1£¬1]£®
¹ÊÑ¡£ºB

µãÆÀ ±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÔËÓã¬Ö÷Òª¿¼²éº¯ÊýµÄµ¥µ÷ÐÔµÄÔËÓã¬ÔËÓÃÊýÐνáºÏµÄ˼Ïë·½·¨ÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø