题目内容
4.已知:数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*)(1)证明数列{an+2}是等比数列.并求数列{an}的通项公式an;
(2)若数列{bn}满足bn=log2(an+2),而Tn为数列{$\frac{{b}_{n}}{{a}_{n}+2}$}的前n项和,求Tn.
分析 (1)由已知数列递推式可得an=2an-1+2,由此构造等比数列{an+2},求其通项公式后可得数列{an}的通项公式;
(2)把数列{an}的通项公式代入bn=log2(an+2),进一步得到数列{$\frac{{b}_{n}}{{a}_{n}+2}$}的通项公式,再利用错位相减法求数列{$\frac{{b}_{n}}{{a}_{n}+2}$}的前n项和Tn.
解答 (1)由Sn=2an-2n,得
当n≥2时,Sn-1=2an-1-2(n-1),
两式作差可得:an=2an-2an-1-2,即an=2an-1+2.
∴an+2=2(an-1+2).
则$\frac{{a}_{n}+2}{{a}_{n-1}+2}=2$.
当n=1时,S1=2a1-2,得a1=2.
∴数列{an+2}是以a1+2=4为首项,以2为公比的等比数列,
∴${a}_{n}+2=4•{2}^{n-1}$,
则${a}_{n}={2}^{n+1}-2$;
(2)由bn=log2(an+2)=$lo{g}_{2}{2}^{n+1}=n+1$,得$\frac{{b}_{n}}{{a}_{n}+2}$=$\frac{n+1}{{2}^{n+1}}$.
则${T}_{n}=\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}+…+\frac{n+1}{{2}^{n+1}}$ ①,
$\frac{1}{2}{T}_{n}=\frac{2}{{2}^{3}}+\frac{3}{{2}^{4}}+…+\frac{n}{{2}^{n+1}}+\frac{n+1}{{2}^{n+2}}$ ②,
①-②得
$\frac{1}{2}{T}_{n}=\frac{2}{{2}^{2}}+\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}}+…+\frac{1}{{2}^{n+1}}+\frac{n+1}{{2}^{n+2}}$
=$\frac{1}{4}+\frac{\frac{1}{4}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}-\frac{n+1}{{2}^{n+2}}=\frac{1}{4}+\frac{1}{2}-\frac{1}{{2}^{n+1}}-\frac{n+1}{{2}^{n+2}}$=$\frac{3}{4}-\frac{n+3}{{2}^{n+2}}$.
∴${T}_{n}=\frac{3}{2}-\frac{n+3}{{2}^{n+1}}$.
点评 本题考查数列递推式,考查了等比关系的确定,训练了错位相减法求数列的和,是中档题.
| A. | 28-4 | B. | 210-4 | C. | 212-4 | D. | 29-4 |
| A. | $f(x)=2sin(2x+\frac{π}{3})$ | B. | $f(x)=2sin(2x-\frac{π}{3})$ | C. | $f(x)=2sin(2x+\frac{π}{6})$ | D. | $f(x)=2sin(2x-\frac{π}{6})$ |