题目内容

5.数列{an}的通项an=n2cos$\frac{2nπ}{3}$,其前n项和为Sn,则S60为(  )
A.1840B.1860C.1880D.2010

分析 化简可得a3n-2+a3n-1+a3n=(3n-2)2cos$\frac{2(3n-2)π}{3}$+(3n-1)2cos$\frac{2(3n-1)π}{3}$+(3n)2cos$\frac{2•3nπ}{3}$=9n-$\frac{5}{2}$,从而求和.

解答 解:∵an=n2cos$\frac{2nπ}{3}$,
∴a3n-2+a3n-1+a3n=(3n-2)2cos$\frac{2(3n-2)π}{3}$+(3n-1)2cos$\frac{2(3n-1)π}{3}$+(3n)2cos$\frac{2•3nπ}{3}$
=-$\frac{1}{2}$(3n-2)2-$\frac{1}{2}$(3n-1)2+(3n)2=9n-$\frac{5}{2}$,
∴S60=(a1+a2+a3)+(a4+a5+a6)+…+(a58+a59+a60
=$\frac{9-\frac{5}{2}+9×20-\frac{5}{2}}{2}$×20=1840,
故选A.

点评 本题考查了数列的性质的判断与应用,同时考查了整体思想与转化思想的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网