题目内容
已知双曲线
-
=1(a>0,b>0)与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
| A、2 | ||||
B、2
| ||||
C、
| ||||
D、
|
分析:根据抛物线和双曲线有相同的焦点求得p和c的关系,根据抛物线的定义可以求出P的坐标,代入双曲线方程与p=2c,b2=c2-a2,联立求得a和c的关系式,然后求得离心率e.
解答:解:∵抛物线y2=8x的焦点坐标F(2,0),p=4,
∵抛物线的焦点和双曲线的焦点相同,
∴p=2c,c=2,
∵设P(m,n),由抛物线定义知:
|PF|=m+
=m+2=5,∴m=3.
∴P点的坐标为(3,
)
∴|
解得:
,c=2
则双曲线的离心率为2,
故答案为:2.
∵抛物线的焦点和双曲线的焦点相同,
∴p=2c,c=2,
∵设P(m,n),由抛物线定义知:
|PF|=m+
| p |
| 2 |
∴P点的坐标为(3,
| 24 |
∴|
|
解得:
|
则双曲线的离心率为2,
故答案为:2.
点评:本题主要考查了双曲线,抛物线的简单性质.考查了学生综合分析问题和基本的运算能力.解答关键是利用性质列出方程组.
练习册系列答案
相关题目