ÌâÄ¿ÄÚÈÝ
17£®¡°ÇÀºì°ü¡±µÄÍøÂçÓÎÏ·ÓжàÖÖÍæ·¨£¬Ð¡Ã÷ÔÚÊ®°ËËêÉúÈÕ¾ÙÐгÉÈËÀñʱ²Î¼ÓÒ»ÖÖ½ÓÁúºì°üÓÎÏ·£»Ð¡Ã÷ÔÚºì°üÀï×°ÁË9ÔªÏÖ½ð£¬È»ºó·¢¸øºÃÓѼף¬²¢¸ø³ö½ð¶îËùÔÚÇø¼ä[1£¬9]£¬Èüײ£¨Ëù²Â½ð¶îΪÕûÊýÔª£»ÏÂͬ£©£¬Èç¹û¼×²ÂÖУ¬¼×½«»ñµÃºì°üÀïµÄ½ð¶î£»Èç¹û¼×δ²ÂÖУ¬¼×ºÍµ±Ç°µÄºì°üת¸øºÃÓÑÒÒ£¬Í¬Ê±¸ø³ö½ð¶îËùÔÚÇø¼ä[6£¬9]£¬ÈÃÒҲ£¬Èç¹ûÒÒ²Âͬ£¬¼×ºÍÒÒ¿ÉÒÔÆ½·Öºì°üÀïµÄ½ð¶î£»Èç¹ûÒÒδ²ÂÖУ¬ÒÒÒª½«µ±Ç°µÄºì°üת·¢¸øºÃÓѱû£¬Í¬Ê±¸ø³ö½ð¶îËùÔÚÇø¼ä[8£¬9]£¬Èñû²Â£¬Èç¹û±û²ÂÖУ¬¼×¡¢ÒҺͱû¿ÉÒÔÆ½·Öºì°üÀïµÄ½ð¶î£¬Èç¹û±ûδ²ÂÖУ¬ºì°üÀïµÄ×ʽð½«ÍË»ØÐ¡Ã÷µÄÕÊ»§£®£¨1£©Çó±ûµÃµ½µÄ0ÔªµÄ¸ÅÂÊ£»
£¨2£©´Ó¸ÅÂÊͳ¼ÆµÄ½Ç¶È¶øÑÔ£¬¼×Ëù»ñµÃµÄ½ð¶îÊÇ·ñ³¬¹ýÒҺͱûÁ½ÈËËù»ñµÃµÄ½ð¶îÖ®ºÍ£¿ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©ÓÉÌâÒ⣬·ÖÈýÖÖÇé¿öÇó±ûµÃµ½0ÔªµÄ¸ÅÂÊ£»
£¨2£©·Ö±ðÇó³ö¼×ÒÒ±û¶ÔÓ¦µÄ·Ö²¼ÁУ¬Çó³ö»ñµÃ½ð¶îµÄÊýѧÆÚÍû£¬½øÐбȽϼ´¿É£®
½â´ð ½â£º£¨1£©±ûµÃµ½µÄ0ԪΪʼþM£¬ÔòP£¨M£©=$\frac{1}{9}+\frac{8}{9}¡Á\frac{1}{4}+\frac{8}{9}¡Á\frac{3}{4}¡Á\frac{1}{2}=\frac{2}{3}$£»
£¨2£©Éè¼×»ñµÃ½ð¶îΪX£¬Ôò
X=0£¬3£¬4.5£¬9£¬P£¨X=3£©=$\frac{1}{3}$£¬P£¨X=0£©=$\frac{8}{9}¡Á\frac{3}{4}¡Á\frac{1}{2}=\frac{1}{3}$£¬P£¨X=4.5£©=$\frac{8}{9}¡Á\frac{1}{4}=\frac{2}{9}$£¬P£¨X=9£©=$\frac{1}{9}$£¬
XµÄ·Ö²¼ÁÐ
| X | 0 | 3 | 4.5 | 9 |
| P | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{2}{9}$ | $\frac{1}{9}$ |
ÉèÒÒ»ñµÃµÄ½ð¶îΪYÔª£¬ÔòYµÄȡֵΪ0£¬3£¬4.5
P£¨Y=0£©=$\frac{1}{9}$+$\frac{8}{9}¡Á\frac{3}{4}¡Á\frac{1}{2}$=$\frac{4}{9}$£¬P£¨Y=3£©=$\frac{8}{9}$¡Á$\frac{3}{4}¡Á\frac{1}{2}$=$\frac{1}{3}$£¬
P£¨Y=4.5£©=$\frac{8}{9}$¡Á$\frac{1}{4}$=$\frac{2}{9}$£»
YµÄ·Ö²¼ÁÐ
| Y | 0 | 3 | 4.5 |
| P | $\frac{4}{9}$ | $\frac{1}{3}$ | $\frac{2}{9}$ |
Éè±û»ñµÃµÄ½ð¶îΪZÔª£¬ÔòZµÄȡֵΪ0£¬3£®
P£¨Z=0£©=$\frac{1}{9}$+$\frac{8}{9}¡Á\frac{1}{4}$+$\frac{8}{9}¡Á\frac{3}{4}¡Á\frac{1}{2}$=$\frac{2}{3}$£¬P£¨Z=3£©=$\frac{8}{9}$¡Á$\frac{3}{4}¡Á\frac{1}{2}$=$\frac{1}{3}$£¬
ZµÄ·Ö²¼ÁÐ
| Z | 0 | 3 |
| P | $\frac{2}{3}$ | $\frac{1}{3}$ |
¡àE£¨X£©=E£¨Y£©+E£¨Z£©£¬
¡à´Óͳ¼ÆÑ§µÄ½Ç¶È¶øÑÔ£¬AËù»ñµÃµÄ½ð¶î²»³¬¹ýBºÍCÁ½ÈËËù»ñµÃµÄ½ð¶îÖ®ºÍ£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¸ÅÂÊ֪ʶµÄÔËÓ㬿¼²é·Ö²¼ÁÐÓëÆÚÍû£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
5£®ÒÑÖªµãPÔÚÇúÏßy=x3-3x2+2x+1ÉÏÒÆ¶¯£¬ÈôÇúÏßÔÚµãP´¦µÄÇÐÏßµÄÇãб½ÇΪ¦Á£¬Ôò¦ÁµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | [0£¬$\frac{¦Ð}{2}$]¡È[$\frac{3¦Ð}{4}$£¬¦Ð£© | B£® | [0£¬$\frac{¦Ð}{2}$£©¡È£¨$\frac{¦Ð}{2}$£¬$\frac{3¦Ð}{4}$£© | C£® | [$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}$] | D£® | [$\frac{3¦Ð}{4}$£¬¦Ð£© |
9£®ÒÑÖªÖÐÐÄÔÚÔµãµÄË«ÇúÏßCµÄÓÒ½¹µãΪF£¨4£¬0£©£¬ÀëÐÄÂʵÈÓÚ$\frac{4}{3}$£¬ÔòCµÄ·½³ÌÊÇ£¨¡¡¡¡£©
| A£® | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{5}$=1 | B£® | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1 | C£® | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | D£® | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{25}$=1 |
7£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðÊǽÇA£¬B£¬CµÄ¶Ô±ß£¬Èôa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬A=60¡ã£¬Ôò$\frac{bsinB}{c}$=£¨¡¡¡¡£©
| A£® | $\frac{3}{4}$ | B£® | $\frac{{\sqrt{3}}}{2}$ | C£® | $\frac{{\sqrt{2}}}{2}$ | D£® | $\frac{1}{2}$ |