题目内容

18.已知函数f(x)=x2-4x+2(1-a)lnx,(a∈R且a≠0).
(Ⅰ)当a=2时,求函数f(x)在区间[e,+∞]上的单调性;
(Ⅱ)当a>2时,求函数f(x)在区间[e,+∞]上的最小值.

分析 (1)求出函数的导数,判断导函数的不等式,求出函数的单调区间即可;
(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出函数的最小值即可.

解答 解:(1)a=2时,f(x)=x2-4x-2lnx,
f′(x)=2x-4-$\frac{2}{x}$=$\frac{2{[(x-1)}^{2}-2]}{x}$>0,
故f(x)在[e,+∞)递增;
(2)f′(x)=2x-4+$\frac{2(1-a)}{x}$=$\frac{2{[(x-1)}^{2}-a]}{x}$,
令g(x)=(x-1)2-a,
2<a≤(e-1)2时,g(x)≥0,即f′(x)≥0,
f(x)在[e,+∞)递增,f(x)min=f(e)=e2-4e+2(1-a),
a>(e-1)2时,令g(x)>0,解得:x>1+$\sqrt{a}$,或x<1-$\sqrt{a}$(舍),
令g(x)<0,解得:e<x<1+$\sqrt{a}$,
故f(x)在[e,1+$\sqrt{a}$)递减,在(1+$\sqrt{a}$,+∞)递增,
故f(x)min=f(1+$\sqrt{a}$).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网