题目内容
6.不等式|x-2|-|2x-1|>0的解集为(-1,1).分析 通过讨论x的范围求出各个区间上的x的范围,取并集即可.
解答 解:x≥2时,x-2-2x+1>0,解得:x<-1,不合题意,
$\frac{1}{2}$<x<2时,2-x-2x+1>0,解得:x<1,
x≤$\frac{1}{2}$时,2-x+2x-1>0,解得:x>-1,
故不等式的解集是(-1,1);
故答案为:(-1,1).
点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道基础题.
练习册系列答案
相关题目
16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为些作了四次试验,得到的数据如下表所示:
(Ⅰ)求出y关于x的线性回归方程$\widehaty$=$\widehatbx$+$\widehata$,并在坐标系中画出回归直线;
(Ⅱ)试预测加工10个零件需要多少时间?b=$\frac{{\sum_{i=1}^n{({{x_1}-\overline x})({{y_1}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_1}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_1}{y_1}-n\overline{xy}}}}{{\sum_{i=1}^n{x_1^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$,$\overline{x}$=$\frac{1}{n}\sum_{i=1}^n{x_1}$,$\overline y$=$\frac{1}{n}\sum_{i=1}^n{y_1}$.
| 零件的个数x(个) | 2 | 3 | 4 | 5 |
| 加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(Ⅱ)试预测加工10个零件需要多少时间?b=$\frac{{\sum_{i=1}^n{({{x_1}-\overline x})({{y_1}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_1}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_1}{y_1}-n\overline{xy}}}}{{\sum_{i=1}^n{x_1^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$,$\overline{x}$=$\frac{1}{n}\sum_{i=1}^n{x_1}$,$\overline y$=$\frac{1}{n}\sum_{i=1}^n{y_1}$.
16.设函数f(x)和g(x)分别是R上的奇函数和偶函数,则函数v(x)=f(x)|g(x)|的图象( )
| A. | 关于原点对称 | B. | 关于x轴对称 | C. | 关于y轴对称 | D. | 关于直线y=x对称 |