题目内容

在△ABC中,角A、B、C所对的边分别为a,b,c,若
AB
AC
=
BA
BC
=1,那么c等于(  )
A、2
B、
2
C、
3
D、4
考点:平面向量数量积的运算
专题:平面向量及应用
分析:
AB
AC
=
BA
BC
=1,转化为一个三角方程,解方程即可证明:A=B,再结合余弦定理,可构造一个关于c的方程,解方程易求c值.
解答: 解:∵
AB
AC
=
BA
BC
=1,
∴bccosA=accosB,即bcosA=acosB
由正弦定理得sinBcosA=sinAcosB
∴sin(A-B)=0
∵-π<A-B<π
∴A-B=0,∴A=B
AB
AC
=1,∴bccosA=1
由余弦定理得bc•
b2+c2-a2
2bc
=1,即b2+c2-a2=2
∵由A=B
得a=b,∴c2=2,∴c=
2

故选B.
点评:本题考查了向量数量积以及正弦定理和余弦定理的运用,在判断三角形形状时,要注意对角的范围进行分析,即求角的大小需要两个条件:该角的一个三角函数值和该角的范围,缺一不可,正、余弦定理是解三解形必用的数学工具.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网