题目内容
7.已知△ABC中,∠C为直角,D为边AC上一点,K为BD上一点,且∠ABC=∠KAD=∠AKD.证明:BK=2DC.分析 设∠ABC=∠KAD=∠AKD=α,则tanα=$\frac{AC}{BC}$,tan2α=$\frac{BC}{CD}$=$\frac{2tanα}{1-{tan}^{2}α}$,进而可得CD=$\frac{{BC}^{2}-{AC}^{2}}{2AC}$,BK=$\frac{{BC}^{2}-{AC}^{2}}{AC}$,进而得到答案.
解答
证明:设∠ABC=∠KAD=∠AKD=α,
则tanα=$\frac{AC}{BC}$,tan2α=$\frac{BC}{CD}$=$\frac{2tanα}{1-{tan}^{2}α}$,
∴CD=$\frac{BC•(1-{tan}^{2}α)}{2tanα}$=$\frac{BC•[1-{(\frac{AC}{BC})}^{2}]}{2•\frac{AC}{BC}}$=$\frac{{BC}^{2}-{AC}^{2}}{2AC}$,
则DK=AD=AC-CD=AC-$\frac{{BC}^{2}-{AC}^{2}}{2AC}$=$\frac{{3A{C}^{2}-BC}^{2}}{2AC}$,
∴BK=BD-DK=$\sqrt{{BC}^{2}+{CD}^{2}}$-DK=$\sqrt{{BC}^{2}+{(\frac{{BC}^{2}-{AC}^{2}}{2AC})}^{2}}$-$\frac{{3A{C}^{2}-BC}^{2}}{2AC}$=$\frac{{BC}^{2}+{AC}^{2}}{2AC}$-$\frac{{3A{C}^{2}-BC}^{2}}{2AC}$=$\frac{{2BC}^{2}-2{AC}^{2}}{2AC}$=$\frac{{BC}^{2}-{AC}^{2}}{AC}$,
∴BK=2DC
点评 本题考查的知识点是二倍角的正切公式,三角函数的定义,勾股定理,难度中档.
| A. | M与N | B. | N与P | C. | M与Q | D. | N与Q |
| A. | -4 | B. | $-\frac{1}{4}$ | C. | $\frac{1}{4}$ | D. | 4 |