题目内容

已知Ω={(x,y)||x|≤1,|y|≤1},A是由曲线y=x与y=x2围成的封闭区域,若向Ω上随机投一点p,则点p落入区域A的概率为(  )
A、
1
6
B、
1
8
C、
1
12
D、
1
24
考点:几何概型,定积分在求面积中的应用
专题:概率与统计
分析:求得两曲线的交点分别为O(0,0)、A(1,1),可得区域A的面积等于函数y=x与y=x2在[0,1]上的定积分值,利用积分计算公式算出区域A的面积.区域Ω表示的是一个边长为2的正方形,因此求出此正方形的面积并利用几何概型公式加以计算,即可得到所求概率.
解答: 解:y=x与y=x2两曲线的交点分别为O(0,0)、A(1,1).
因此,两条曲线围成的区域A的面积为
S=∫01(x-x2)dx=(
1
2
x2-
1
3
x3
)|
 
1
0
=
1
6

而Ω={(x,y)||x≤1,|y|≤1},表示的区域是一个边长为2的正方形,面积为4,
∴在Ω上随机投一点P,则点P落入区域A中的概率P=
1
6
4
=
1
24

故选D.
点评:本题考查了定积分求曲边梯形的面积以及几何概型的概率求法;本题给出区域A和Ω,求在Ω上随机投一点P,使点P落入区域A中的概率.着重考查了定积分计算公式、定积分的几何意义和几何概型计算公式等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网