题目内容
12.设实数x,y满足不等式组$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥0\end{array}\right.$,若z=2x+y,则z的最大值等于2,z的最小值等于0.分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥0\end{array}\right.$作出可行域如图,![]()
化z=2x+y为y=-2x+z,
由图可知,当直线y=-2x+z过O时,直线在y轴上的截距最小,z有最小值为0;
当直线过A(1,0)时,直线在y轴上的截距最大,z有最大值为2.
故答案为:2,0.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
16.已知函数f(x)=sinx的图象向右平移m个单位后得到函数g(x)的图象,h(x)=cos(x+$\frac{π}{3}$),g(x)与h(x)图象的零点重合,则m不可能的值为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{7π}{6}$ | D. | -$\frac{5π}{6}$ |
7.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y+2≤0\\ x≥1\\ x+y-7≤0\end{array}\right.$,则$\frac{x+y}{y}$的取值范围是( )
| A. | $(-∞,\frac{7}{6}]$ | B. | $[\frac{14}{9},+∞)$ | C. | $[\frac{14}{9},7]$ | D. | $[\frac{7}{6},\frac{14}{9}]$ |
1.将函数y=3sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{2}$个单位后,得到的图象对应函数为g(x),则g($\frac{π}{6}$=)( )
| A. | 0 | B. | -3 | C. | 3 | D. | $\frac{3}{2}$ |