题目内容
在等差数列{an}中,设公差为d,若前n项和为Sn=-n2,则通项和公差分别为 ( ).
A.an=2n-1,d=-2 B.an=2n-1,d=2
C.an=-2n+1,d=-2 D.an=-2n+1,d=2
C解析 an=Sn-Sn-1=-n2-[-(n-1)2]=-2n+1(n>1,n∈N*).当n=1时,a1=S1=
-1满足上式,显然d=-2.
练习册系列答案
相关题目
题目内容
在等差数列{an}中,设公差为d,若前n项和为Sn=-n2,则通项和公差分别为 ( ).
A.an=2n-1,d=-2 B.an=2n-1,d=2
C.an=-2n+1,d=-2 D.an=-2n+1,d=2
C解析 an=Sn-Sn-1=-n2-[-(n-1)2]=-2n+1(n>1,n∈N*).当n=1时,a1=S1=
-1满足上式,显然d=-2.