题目内容

已知不等式
1x-1
<1
的解集为p,不等式x2+(a-1)x-a>0的解集为q,若p是q的充分不必要条件,则实数a的取值范围是
 
分析:先求出命题p,q的等价条件,利用p是q的充分不必要条件,确定实数a的取值范围.
解答:解:由
1
x-1
<1
1
x-1
-1=
2-x
x-1
<0
,即(2-x)(x-1)<0,得x<1或x>2.所以p:x<1或x>2.
由x2+(a-1)x-a>0得(x-1)(x+a)>0.
则不等式对应方程的根为x=1和x=-a
①若-a=1,即a=-1,q的解集为R,此时恒成立.
②若-a<1,即a>-1,不等式解为x>1或x<-a,此时不成立.
③若-a>1,即a<-1,不等式的解为x>-a或x<1,要使p是q的充分不必要条件,则
-a≤2
-a>1
,解得-2≤a<-1,
综上-2≤a≤-1.
故答案为:-2≤a≤-1.
点评:本题主要考查充分条件和必要条件的应用,利用分数不等式和一元二次不等式的解法求出对应的解是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网