题目内容
5.已知复数z满足$\frac{1+i}{1-i}$•z=3+4i,则|z|=( )| A. | 2$\sqrt{6}$ | B. | $\sqrt{7}$ | C. | 5$\sqrt{2}$ | D. | 5 |
分析 利用复数的运算法则、模的计算公式即可得出.
解答 解:$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$=$\frac{2i}{2}$=i,
复数z满足$\frac{1+i}{1-i}$•z=3+4i,∴iz=3+4i,∴-i•iz=-i(3+4i),∴z=4-3i,
则|z|=$\sqrt{{4}^{2}+(-3)^{2}}$=5.
故选:D.
点评 本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
15.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0)的最小正周期为π,则“f(-x)=f(x)”是“φ=$\frac{π}{4}$”的( )
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
16.某公司新招聘8名员工,随机平均分配给下属的甲、乙两个部门,则事件“两名英语翻译人员不在同一部门,另外三名电脑编程人员也不在同一部门”发生的概率为( )
| A. | $\frac{18}{35}$ | B. | $\frac{15}{35}$ | C. | $\frac{12}{35}$ | D. | $\frac{9}{35}$ |
20.把函数$f(x)=\sqrt{2}sin(2x-\frac{π}{4})$的图象上每个点的横坐标扩大到原来的4倍,再向左平移$\frac{π}{3}$,得到函数g(x)的图象,则函数g(x)的一个单调递减区间为( )
| A. | $[-\frac{5π}{6},\frac{7π}{6}]$ | B. | $[\frac{7π}{6},\frac{19π}{6}]$ | C. | $[-\frac{2π}{3},\frac{4π}{3}]$ | D. | $[-\frac{17π}{6},-\frac{5π}{6}]$ |
10.设双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F1,左顶点为A,过F1作x轴的垂线交双曲线于P、Q两点,过P作PM垂直QA于M,过Q作QN垂直PA于N,设PM与QN的交点为B,若B到直线PQ的距离大于a+$\sqrt{{a}^{2}+{b}^{2}}$,则该双曲线的离心率取值范围是( )
| A. | (1-$\sqrt{2}$) | B. | ($\sqrt{2}$,+∞) | C. | (1,2$\sqrt{2}$) | D. | (2$\sqrt{2}$,+∞) |
17.已知$a={(\sqrt{2})^{\frac{4}{3}}}$,$b={2^{\frac{2}{5}}}$,$c={9^{\frac{1}{3}}}$,则( )
| A. | b<a<c | B. | a<b<c | C. | b<c<a | D. | c<a<b |
14.双曲线${x^2}-\frac{y^2}{m}=1$的离心率大于$\sqrt{2}$的充要条件是( )
| A. | m>1 | B. | $m>\frac{1}{2}$ | C. | m>2 | D. | m≥1 |