题目内容

17.定义在R上的函数y=f(x)满足f(x)•f(x+5)=3,f(1)=2,则f(2016)=$\frac{3}{2}$.

分析 推导出f(x)是一个周期为10的周期函数,f(1)•f(6)=3,从而能求出结果.
故答案为:$\frac{3}{2}$.

解答 解:∵定义在R上的函数y=f(x)满足f(x)•f(x+5)=3,
∴f(x+5)•f(x+10)=3,
∴f(x)=f(x+10),∴f(x)是一个周期为10的周期函数,
∵f(1)=2,
∴f(2016)=f(6),
∵f(1)•f(6)=3,
∴f(6)=$\frac{3}{f(1)}$=$\frac{3}{2}$.
∴f(2016)=f(6)=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网