题目内容
17.定义在R上的函数y=f(x)满足f(x)•f(x+5)=3,f(1)=2,则f(2016)=$\frac{3}{2}$.分析 推导出f(x)是一个周期为10的周期函数,f(1)•f(6)=3,从而能求出结果.
故答案为:$\frac{3}{2}$.
解答 解:∵定义在R上的函数y=f(x)满足f(x)•f(x+5)=3,
∴f(x+5)•f(x+10)=3,
∴f(x)=f(x+10),∴f(x)是一个周期为10的周期函数,
∵f(1)=2,
∴f(2016)=f(6),
∵f(1)•f(6)=3,
∴f(6)=$\frac{3}{f(1)}$=$\frac{3}{2}$.
∴f(2016)=f(6)=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
8.将函数f(x)=sin(2x+φ)+$\sqrt{3}$cos(2x+φ)(0<φ<π)的图象向左平移$\frac{π}{4}$个单位后,得到的函数的图象关于点$(\frac{π}{2},0)$对称,则函数$g(x)=\frac{1}{2}sin(2x+φ)$在$[-\frac{π}{2},\frac{π}{6}]$上的最小值为( )
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
7.设z1、z2∈C,则“z1+z2是实数”是“z1与z2共轭”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |