题目内容
已知在四棱锥
中,
,
,
,
分别是
的中点.![]()
(Ⅰ)求证
;
(Ⅱ)求证
;
(Ⅲ)若
,求二面角
的大小.
(1)根据已知条件,要证明
,则要根据线面你垂直的判定定理来得到,分析
,所以
以及
加以证明。
(2) 对于线面平行,
的证明分析到
,是关键一步。
(3)
,所以二面角
等于![]()
解析试题分析:(Ⅰ) 证明:由已知得
,
故
是平行四边形,所以
,---------1分
因为
,所以
, ---------2分
由
及
是
的中点,得
, ---------3分
又因为
,所以
. ---------4分
(Ⅱ) 证明:连接
交
于
,再连接
,
由
是
的中点及
,知
是
的中点,
又
是
的中点,故
, ---------5分
又因为
,
所以
. ---------7分
(Ⅲ)解:设![]()
,
则
,又
,
,
故
即
, ---------8分
又因为
,
,
所以
,得
,故
, ---------10分
取
中点
,连接
,可知
,因此
, ---------11分
综上可知
为二面角
的平面角. ---------12分
可知
,
故
,所以二面角
等于
. ---------13分
考点:线面平行和垂直证明,二面角的平面角
点评:对于空间中的线面的平行和垂直的判定定理以及性质定理要熟练的掌握,是解题的关键,属于中档题。
练习册系列答案
相关题目