题目内容

已知cos(α+β)+cos(α-β)=
4
5
,sin(α+β)+sin(α-β)=
3
5
,求:
(1)tanα;
(2)
2(cos
α
2
)
2
-3sinα-1
2
sin(α+
π
4
)
分析:(1)化简已知条件可得2cosαcosβ=
4
5
,2sinαcosβ=
3
5
,相除可得tanα 的值.
(2)把要求的式子利用二倍角公式、两角和的正弦公式化为
cosα-3sinα
sinα+cosα
,再利用同角三角函数的基本关系化为
1-tanα
tanα+1
,从而求得结果.
解答:解:(1)∵已知cos(α+β)+cos(α-β)=
4
5
,sin(α+β)+sin(α-β)=
3
5

∴2cosαcosβ=
4
5
,2sinαcosβ=
3
5
,相除可得tanα=
3
4

(2)
2(cos
α
2
)
2
-3sinα-1
2
sin(α+
π
4
)
=
cosα-3sinα
2
(sinαcos
π
4
+cosαsin
π
4
)
=
cosα-3sinα
sinα+cosα
=
1-tanα
tanα+1
=
1
7
点评:本题主要考查三角函数的恒等变换及化简求值,同角三角函数的基本关系,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网