题目内容
14.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( )| A. | a<b<c | B. | c<b<a | C. | b<a<c | D. | b<c<a |
分析 由奇函数f(x)在R上是增函数,则g(x)=xf(x)偶函数,且在(0,+∞)单调递增,则a=g(-log25.1)=g(log25.1),则2<-log25.1<3,1<20.8<2,即可求得b<a<c
解答 解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,
∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,
∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,
∴a=g(-log25.1)=g(log25.1),
则2<-log25.1<3,1<20.8<2,
由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),
∴b<a<c,
故选C.
点评 本题考查函数奇偶性,考查函数单调性的应用,考查转化思想,属于基础题.
练习册系列答案
相关题目
9.设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=( )
| A. | {2} | B. | {1,2,4} | C. | {1,2,4,5} | D. | {x∈R|-1≤x≤5} |
1.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=$\sqrt{5}$,|$\overrightarrow{c}$|=1,若($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=0,则|$\overrightarrow{a}$-$\overrightarrow{b}$|的取值范围是( )
| A. | [1,2] | B. | [2,4] | C. | [$\sqrt{7}$-1,$\sqrt{7}$+1] | D. | [$\sqrt{5}$-1,$\sqrt{5}$+1] |
2.某公司的组织结构图如图所示,其中技术服务部的直接领导是( )
| A. | 董事长 | B. | 监事会 | C. | 总经理 | D. | 总工程师 |