题目内容

设向量
a
=(1,0),
b
=(
1
2
1
2
),则(  )
分析:根据个向量的数量积的运算,两个向量垂直、平行的条件,逐一检验各个选项是否正确,从而得而出结论.
解答:解:由于向量
a
=(1,0),
b
=(
1
2
1
2
),故|
a
|
=1,|
b
|
=
1
4
+
1
4
=
2
2
,故A不正确.
a
b
=(1,0)•(
1
2
1
2
)=
1
2
,故B不正确.
由于两个向量的坐标不满足x1•y2-x2•y1=0,故两个向量不垂直,故C不正确.
a
-
b
)•
b
=(
1
2
,-
1
2
)•(
1
2
1
2
)=
1
4
-
1
4
=0,故(
a
-
b
)⊥
b
,故D正确.
故选D.
点评:本题主要考查两个向量的数量积的运算,两个向量垂直、平行的条件,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网