ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=cos¦Á}\\{y=m+sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{5}}{5}t}\\{y=4+\frac{2\sqrt{5}}{5}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬£¨1£©ÇóÇúÏßCÓëÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßCÏཻÓÚP£¬QÁ½µã£¬ÇÒ|PQ|=$\frac{4\sqrt{5}}{5}$£¬ÇóʵÊýmµÄÖµ£®
·ÖÎö £¨1£©ÓÉsin2¦Á+cos2¦Á=1£¬ÄÜÇó³öÇúÏßCµÄÆÕͨ·½³Ì£¬ÏûÈ¥Ö±ÏßlÖеIJÎÊý£¬ÄÜÇó³öÖ±ÏßlµÄÆÕͨ·½³Ì£®£®
£¨2£©Çó³öÔ²ÐÄC£¨0£¬m£©µ½Ö±Ïßl£º2x-y+2=0µÄ¾àÀëd£¬ÔÙÓɹ´¹É¶¨Àí½áºÏÏÒ³¤ÄÜÇó³öm£®
½â´ð ½â£º£¨1£©¡ßÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=cos¦Á}\\{y=m+sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬
¡àÇúÏßCµÄÆÕͨ·½³Ì£ºx2+£¨y-m£©2=1£¬
¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{5}}{5}t}\\{y=4+\frac{2\sqrt{5}}{5}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡àÏûÈ¥²ÎÊý£¬µÃÖ±ÏßlµÄÆÕͨ·½³ÌΪ£º2x-y+2=0£®
£¨2£©¡ßÇúÏßC£ºx2+£¨y-m£©2=1ÊÇÒÔC£¨0£¬m£©ÎªÔ²ÐÄ£¬ÒÔ1Ϊ°ë¾¶µÄÔ²£¬
Ô²ÐÄC£¨0£¬m£©µ½Ö±Ïßl£º2x-y+2=0µÄ¾àÀ룺d=$\frac{|0-m+2|}{\sqrt{4+1}}$=$\frac{\sqrt{5}}{5}$|m-2|£¬
ÓÖÖ±ÏßlÓëÇúÏßCÏཻÓÚP£¬QÁ½µã£¬ÇÒ|PQ|=$\frac{4\sqrt{5}}{5}$£¬
¡à2$\sqrt{1-£¨\frac{\sqrt{5}}{5}|m-2|£©^{2}}$=$\frac{4\sqrt{5}}{5}$
½âµÃm=1»òm=3£®
µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢ÆÕͨ·½³ÌµÄ»¥»¯£¬¿¼²éʵÊýÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÔ²µÄÐÔÖÊ¡¢µãµ½Ö±Ïß¾àÀ빫ʽ¡¢¹´¹É¶¨ÀíµÄºÏÀíÔËÓã®
| A£® | $\frac{¦Ð}{3}$£¬$\frac{1}{6}$R3 | B£® | $\frac{¦Ð}{3}$£¬$\frac{1}{3}$R3 | C£® | $\frac{¦Ð}{2}$£¬$\frac{1}{3}$R3 | D£® | $\frac{¦Ð}{2}$£¬$\frac{1}{6}$R3 |
| A£® | $\frac{\sqrt{2}}{2}$ | B£® | $\frac{\sqrt{2}}{4}$ | C£® | $\frac{\sqrt{2}}{8}$ | D£® | $\frac{1}{2}$ |
| A£® | 20 | B£® | 24 | C£® | 16 | D£® | $16+\frac{3}{2}\sqrt{10}$ |