题目内容

已知直线y=kx+1与圆(x-1)2+y2=4相交于A、B两点,若|AB|=2
2
,则实数k的值为(  )
分析:由圆的方程找出圆心坐标与半径r,利用点到直线的距离公式表示出圆心到直线y=kx+1的距离d,再由弦AB的长及圆的半径,利用垂径定理及勾股定理列出关于k的方程,求出方程的解即可得到k的值.
解答:解:由圆(x-1)2+y2=4,得到圆心(1,0),半径r=2,
∵圆心到直线y=kx+1的距离d=
|k+1|
k2+1
,|AB|=2
2

∴|AB|=2
r2-d2
,即|AB|2=4(r2-d2),
∴8=4(4-
(k+1)2
k2+1
),整理得:(k-1)2=0,
解得:k=1.
故选D
点评:此题考查了直线与圆相交的性质,涉及的知识有:圆的标准方程,点到直线的距离公式,垂径定理,以及勾股定理,当直线与圆相交时,常常根据垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网