题目内容
11.某校高一,高二,高三年级的学生人数分别是750,750,1000,现采用分层抽样的方法抽取一个容量为50的样本,则应从高二年级抽取15学生.分析 根据分层抽样原理,利用频数、频率与样本容量的关系求出即可.
解答 解:根据采用分层抽样方法,
样本容量为50时,应从高二年级抽取的人数为
50×$\frac{750}{750+750+1000}$=15.
故答案为:15.
点评 本题考查了分层抽样方法的应用问题,是基础题.
练习册系列答案
相关题目
19.已知函数f(x)=x-ex(e为自然对数的底数),g(x)=mx+1,(m∈R),若对于任意的x1∈[-1,2],总存在x0∈[-1,1],使得g(x0)=f(x1) 成立,则实数m的取值范围为( )
| A. | (-∞,-e]∪[e,+∞﹚ | B. | [-e,e] | ||
| C. | ﹙-∞,-2-$\frac{1}{e}$]∪[-2+$\frac{1}{e}$,+∞﹚ | D. | [-2-$\frac{1}{e}$,-2+$\frac{1}{e}$] |
6.已知函数f(x)=|xex|,方程f2(x)+tf(x)+1=0有四个实数根,则实数t的取值范围为( )
| A. | (-∞,-e-$\frac{1}{e}$) | B. | (-∞,e+$\frac{1}{e}$) | C. | (-e-$\frac{1}{e}$,+∞) | D. | (-∞,-e-1) |
3.
已知函数f(x)=ax3+bx2+cx+d,若函数f(x)的图象如图所示,则一定有( )
| A. | b>0,c>0 | B. | b<0,c>0 | C. | b>0,c<0 | D. | b<0,c<0 |
4.对同一目标进行三次射击,第一、二、三次射击命中目标的概率分别为0.4,0.5和0.7,则三次射击中恰有一次命中目标的概率是( )
| A. | 0.36 | B. | 0.64 | C. | 0.74 | D. | 0.63 |
5.下列求导运算错误的是( )
| A. | (x2+4)′=2x+4 | B. | ${({{{log}_2}x})^′}=\frac{1}{xln2}$ | C. | (cosx)′=-sinx | D. | ${({\frac{1}{x}})^′}=-\frac{1}{x^2}$ |