题目内容
19.设$a=\frac{{\sqrt{2}}}{2}(sin{56°}-cos{56°})$,b=cos50°cos128°+cos40°cos38°,c=cos80°,则a,b,c的大小关系是( )| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | a>c>b |
分析 运用两角和差的正弦和余弦公式,化简整理,再由余弦函数的单调性,即可得到所求大小关系.
解答 解:$a=\frac{{\sqrt{2}}}{2}(sin{56°}-cos{56°})$=sin(56°-45°)=sin11°=cos79°,
b=cos50°•cos128°+cos40°•cos38°=-cos50°•cos52°+sin50°•sin52°
=-cos102°=cos78°,
c=cos80°,
由cos78°>cos79°>cos80°,
即b>a>c.
故选:B.
点评 本题考查三角函数的化简和求值,注意运用两角和差公式和二倍角公式,同时考查余弦函数的单调性,属于中档题.
练习册系列答案
相关题目
10.小李同学要画函数f(x)=Acos(ωx+φ)的图象,其中ω>0,|φ|<$\frac{π}{2}$,小李同学用“五点法”列表,并填写了一些数据,如下表:
(1)请将表格填写完整,并求出函数f(x)的解析式;
(2)将f(x)的图象向右平移$\frac{π}{3}$个单位,得到函数y=g(x),求g(x)的图象中离y轴最近的对称轴.
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| X | -$\frac{π}{8}$ | $\frac{3π}{8}$ | |||
| f(x) | 3 | 0 | 3 |
(2)将f(x)的图象向右平移$\frac{π}{3}$个单位,得到函数y=g(x),求g(x)的图象中离y轴最近的对称轴.
7.
对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(1)求出表中M,p及图中a的值;
(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数;
(3)根据服务次数的频率分布直方图,求服务次数的中位数的估计值.
| 分组 | 频数 | 频率 |
| [10,15) | 10 | 0.25 |
| [15,20) | 25 | n |
| [20,25) | m | p |
| [25,30] | 2 | 0.05 |
| 合计 | M | 1 |
(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数;
(3)根据服务次数的频率分布直方图,求服务次数的中位数的估计值.
14.已知f(n)=1+$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{2^n}({n∈{N^*}})$,用数学归纳法证明f(n)>$\frac{n}{2}$时,由n=k到n=k+1,左边增加了( )项.
| A. | 1 | B. | k | C. | 2k | D. | 2k-1 |
4.对长期吸烟与患肺癌这两个分类变量的计算中,得出K2的值大于3.841,且查表可得P(K2≥3.841)≈0.05,则下列说法正确的是( )
| A. | 我们有95%的把握认为长期吸烟与患肺癌有关系,那么在100个长期吸烟的人中必有95人患肺癌 | |
| B. | 从独立性检验的原理可知有95%的把握认为长期吸烟与患肺癌有关系,即某一个人如果长期吸烟,那么他有95%的可能患肺癌 | |
| C. | 从独立性检验的原理可知有超过95%的把握认为长期吸烟与患肺癌有关系,是指有不超过5%的可能性使得推断出现错误 | |
| D. | 以上三种说法都不正确 |