题目内容
已知
为定义在
上的偶函数,当
时,有
,且当
时,
,给出下列命题
①
;
②函数
在定义域上是周期为2的函数;
③直线
与函数
的图象有2个交点;
④函数
的值域为
.
其中正确的是
A.①,② B.②,③ C.①,④ D.①,②,③,④
(本小题满分13分)某普通高中为了了解学生的视力状况,随机抽查了100名高二年级学生和100名高三年级学生,对这些学生配戴眼镜的度数(简称:近视度数)进行统计,得到高二学生的频数分布表和高三学生频率分布直方图如下:
![]()
近视度数 | 0–100 | 100–200 | 200–300 | 300–400 | 400以上 |
学生频数 | 30 | 40 | 20 | 10 | 0 |
将近视程度由低到高分为4个等级:当近视度数在0-100时,称为不近视,记作0;当近视度数在100-200时,称为轻度近视,记作1;当近视度数在200-400时,称为中度近视,记作2;当近视度数在400以上时,称为高度近视,记作3.
(Ⅰ)从该校任选1名高二学生,估计该生近视程度未达到中度及以上的概率;
(Ⅱ)设
,从该校任选1名高三学生,估计该生近视程度达到中度或中度以上的概率;
(Ⅲ)把频率近似地看成概率,用随机变量
分别表示高二、高三年级学生的近视程度,若
,求
.
(本小题满分13分)某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图:
分组(日销售量) | 频率(甲种酸奶) |
[ 0,10] | 0.10 |
(10,20] | 0.20 |
(20,30] | 0.30 |
(30,40] | 0.25 |
(40,50] | 0.15 |
![]()
(Ⅰ)写出频率分布直方图中的
的值,并作出甲种酸奶日销售量的频率分布直方图;
![]()
(Ⅱ)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为
,
,试比较
与
的大小;(只需写出结论)
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量.