题目内容
函数y=的值域是 .
(12分)已知:,
(1)当时,恒有,求的取值范围;
(2)当时,恰有成立,求的值.
(3)当时,恒有,求的取值范围;
已知为两条不同的直线,为两个不同的平面,且,给出下列结论:①若∥,则∥ ;②若∥,则∥;③若⊥,则⊥; ④若⊥,则⊥;其中正确结论的个数是( )
A.0 B.1 C.2 D.3
设是定义在R上的偶函数,对χ,都有,且当χ [-2,0]时,
,若在区间(-2,6]内关于χ的方程(>1)恰有3个不同的实数根,
则的取值范围是( )
A、(1,2) B、(2,+∞) C、(1,) D、(,2)
若函数对任意,都有,则函数是( )
A.增函数 B.减函数 C.奇函数 D.偶函数
由直线上的点向圆引切线,则切线长的最小值为 .
(本小题满分12分)已知,直线,椭圆,分别为椭圆的左、右焦点.
(1)当直线过右焦点时,求直线的方程;
(2)设直线与椭圆交于两点,,的重心分别为.若原点在以线段为直径的圆内,求实数的取值范围.
给出下列结论:
①设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则α⊥β是a⊥b的必要不充分条件.
②在区间[-1,1]上随机取一个数x,则的值介于0到之间的概率为
③从以正方体的顶点连线所成的直线中任取两条,则所取两条直线为异面直线的概率为
④将4个相同的红球和4个相同的篮球排成一排,从左到右每个球依次对应的序号为1,2,3,…,8,若同色球之间不加区分,则4个红球对应的序号之和小于4个蓝球对应的序号之和的排列方法种数为31.
其中正确结论的序号为 .
(本题满分12分)一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为,,.
(Ⅰ)求“抽取的卡片上的数字满足”的概率;
(Ⅱ)求“抽取的卡片上的数字,,不完全相同”的概率.