题目内容
16.已知函数f(x)=ax2+2ln(2-x)(a∈R),设曲线y=f(x)在点(1,f(1))处的切线为l,若l与直线x-2y+2=0垂直,求a的值.分析 利用导数的几何意义求出x=1处的切线的斜率,再根据两直线垂直的条件:斜率之积为-1,建立方程,解之即可.
解答 解:f(x)=ax2+2ln(2-x)的导数为f′(x)=2ax-$\frac{2}{2-x}$,
即有在点(1,f(1))处的切线斜率为2a-2,
由l与直线x-2y+2=0垂直,
∴2a-2=-2,即a=0,
∴a的值为0.
点评 本题主要考查了利用导数研究曲线上某点处的切线方程,以及两直线垂直的条件等基础题知识,考查运算求解能力,属于基础题.
练习册系列答案
相关题目
7.在研究某种药物对“H1N1”病毒的治疗效果时进行动物试验,得到以下数据:对一组150只动物服用药物,其中132只动物存活,18只动物死亡;对另一组150只动物进行常规治疗,其中114只动物存活,36只动物死亡.
(1)根据以上数据建立一个2×2列联表.
(2)试问是否在犯错误的概率不超过1%的前提下,认为该种药对治疗“H1N1”病毒有效?
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(1)根据以上数据建立一个2×2列联表.
(2)试问是否在犯错误的概率不超过1%的前提下,认为该种药对治疗“H1N1”病毒有效?
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
4.已知向量$\overrightarrow{{e}_{1}}$=(cosxπ,sinxπ),$\overrightarrow{{e}_{2}}$=(sinxπ,cosxπ)(x∈R)可作为平面向量的一组基底,则x不可能的是( )
| A. | $\frac{1}{3}$ | B. | 1 | C. | $\frac{5}{4}$ | D. | 2 |
1.已知函数y=f(x)是定义在R上的偶函数,在(-∞,0]上单调递减,且有f(3)=0,则使得$f({log_{\frac{1}{3}}}x)<0$的x的范围为( )
| A. | (-3,3) | B. | (-∞,-3)∪(3,+∞) | C. | $(-∞,\frac{1}{27})∪(27,+∞)$ | D. | $(\frac{1}{27},27)$ |
8.若一动直线x=a与函数$f(x)=2{cos^2}(\frac{π}{4}+x)$,g(x)=$\sqrt{3}$cos2x的图象分别交于MN两点,则|MN|的最大值是( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |