题目内容
1.已知函数y=f(x)是定义在R上的偶函数,在(-∞,0]上单调递减,且有f(3)=0,则使得$f({log_{\frac{1}{3}}}x)<0$的x的范围为( )| A. | (-3,3) | B. | (-∞,-3)∪(3,+∞) | C. | $(-∞,\frac{1}{27})∪(27,+∞)$ | D. | $(\frac{1}{27},27)$ |
分析 由f(x)为偶函数,f(x)在(-∞,0)上的单调性,可判断f(x)在(0,+∞)上的单调性,由f(3)=0,可得f(-3)=0,从而据题意可作出f(x)的草图,由图象即可解得不等式.
解答
解:因为f(x)在(-∞,0)上单调递减,又f(x)为R上的偶函数,
所以f(x)在(0,+∞)上单调递增,
由f(3)=0可得f(-3)=0,
作出满足题意的函数f(x)的草图,如图:
由图象可得,-3<$lo{g}_{\frac{1}{3}}x$<3.
∴$\frac{1}{27}<x<27$
故选D.
点评 本题考查函数的奇偶性、单调性及其应用,数形结合解决本题简洁直观,注意体会.
练习册系列答案
相关题目
9.函数y=sin(-2x+$\frac{π}{6}$)的单调递增区间是( )
| A. | [-$\frac{π}{6}$+2kπ,$\frac{π}{3}$+2kπ](k∈Z) | B. | $[\frac{π}{3}+2kπ,\frac{5π}{6}+2kπ](k∈Z)$ | ||
| C. | [-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z) | D. | $[\frac{π}{3}+kπ,\frac{5π}{6}+kπ](k∈Z)$ |