ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¾¹ýµã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬Æä×ó¡¢ÓÒ¶¥µã·Ö±ðΪA£¬B£®Ö±Ïßl1£ºx=-2£¬Ö±Ïßl2£ºy=2£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèµãPÊÇÍÖÔ²CÉÏÔÚxÖáÉÏ·½µÄÒ»¸ö¶¯µã£¬Ö±ÏßAPÓëÖ±Ïßl2½»ÓÚµãM£¬Ö±ÏßBPÓëÖ±Ïßl1½»ÓÚµãN£¬ÇóÖ±ÏßMNµÄбÂʵÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÁªÁ¢$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½â³öa£¬b£¬c¼´¿ÉµÃ³ö£®
£¨2£©ÉèP£¨x0£¬y0£©£¬Ôò${x}_{0}^{2}+4{y}_{0}^{2}=4$£®¿ÉµÃkAP•kBP=-$\frac{1}{4}$£®ÉèkAP=k£¬¿ÉµÃkBP=-$\frac{1}{4k}$£®Ö±ÏßAPµÄ·½³ÌΪ£ºy=k£¨x+2£©£¬¿ÉµÃM$£¨\frac{2-2k}{k}£¬2£©$£»Í¬Àí¿ÉµÃ£ºN$£¨-2£¬\frac{1}{k}£©$£¬¼´¿ÉµÃ³ökMN£®
½â´ð ½â£º£¨1£©ÁªÁ¢$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃa=2£¬b=1£¬c=$\sqrt{3}$£¬![]()
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£®
£¨2£©ÉèP£¨x0£¬y0£©£¬Ôò${x}_{0}^{2}+4{y}_{0}^{2}=4$£®
kAP•kBP=$\frac{{y}_{0}}{{x}_{0}+2}$•$\frac{{y}_{0}}{{x}_{0}-2}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-4}$=-$\frac{1}{4}$£®
ÉèkAP=k£¬ÔòkBP=-$\frac{1}{4k}$£®
Ö±ÏßAPµÄ·½³ÌΪ£ºy=k£¨x+2£©£¬¡àM$£¨\frac{2-2k}{k}£¬2£©$£®
Ö±ÏßBPµÄ·½³ÌΪ£ºy=$-\frac{1}{4k}$£¨x-2£©£¬¡àN$£¨-2£¬\frac{1}{k}£©$£®
¡àkMN=$\frac{2-\frac{1}{k}}{\frac{2-2k}{k}+2}$=k-$\frac{1}{2}$£¬
¡ßk£¾0£¬
¡àkMN=k-$\frac{1}{2}$$£¾-\frac{1}{2}$£®
¡àÖ±ÏßMNµÄбÂʵÄȡֵ·¶Î§ÊÇ$£¨-\frac{1}{2}£¬+¡Þ£©$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ð±ÂʼÆË㹫ʽ¡¢º¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| A£® | 25ÈË | B£® | 15 ÈË | C£® | 30 ÈË | D£® | 20ÈË |
| A£® | [1£¬+¡Þ£© | B£® | £¨-¡Þ£¬2] | C£® | [2£¬3] | D£® | [1£¬3] |