ÌâÄ¿ÄÚÈÝ
5£®£¨1£©Çó¸Ã×ÔÐгµÊֵįïÐÐËÙ¶È£»
£¨2£©ÈôµãOÕýÎ÷·½Ïò27.5ǧÃ×´¦ÓиöÆøÏó¹Û²âÕ¾E£¬¼Ù¶¨ÒÔµãEΪÖÐÐĵÄ3.5ǧÃ×·¶Î§ÄÚÓг¤Ê±¼äµÄ³ÖÐøÇ¿½µÓ꣮ÊÔÎÊ£º¸Ã×ÔÐгµÊֻ᲻»á½øÈë½µÓêÇø£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾ÝÓàÏÒ¶¨Àí£¬¼´¿ÉÇó³öACµÄ³¤£¬¼´¿ÉÇó³ö×ÔÐгµµÄËÙ¶È£¬
£¨2£©Ïȸù¾ÝÓàÏÒ¶¨Àí£¬¼´¿ÉÇó³öcos¡ÏOAC£¬ÔÙ¸ù¾ÝÕýÏÒ¶¨Àí¿ÉµÃOM£¬ÔÙÔÚRt¡÷EHMÖУ¬Çó³öEMµÄ´óС£¬±È½Ï¼´¿É£®
½â´ð
½â£º£¨1£©ÓÉÌâÒ⣬֪£ºOA=20$\sqrt{2}$£¬OC=5 $\sqrt{13}$£¬
¡ÏAOC=¦Á£¬sin¦Á=$\frac{1}{\sqrt{26}}$£®
ÓÉÓÚ0¡ã£¼¦Á£¼90¡ã£¬ËùÒÔcos=$\sqrt{1-£¨\frac{1}{\sqrt{26}}}£©^{2}$=$\frac{5\sqrt{26}}{26}$£®
ÓÉÓàÏÒ¶¨Àí£¬µÃAC=$\sqrt{O{A}^{2}+O{C}^{2}-2OA•OC•cos¦Á}$=5$\sqrt{5}$£®
ËùÒÔ¸Ã×ÔÐгµÊÖµÄÐÐÊ»ËÙ¶ÈΪ$\frac{5\sqrt{5}}{\frac{1}{3}}$=15$\sqrt{5}$ £¨Ç§Ã×/Сʱ£©£®
£¨2£©Èçͼ£¬ÉèÖ±ÏßOEÓëABÏཻÓÚµãM£®ÔÚ¡÷AOCÖУ¬ÓÉÓàÏÒ¶¨Àí£¬
µÃ£ºcos¡ÏOAC=$\frac{O{A}^{2}+A{C}^{2}-O{C}^{2}}{2OC•AC}$=$\frac{2{0}^{2}¡Á2+{5}^{2}¡Á5-{5}^{2}¡Á13}{2¡Á20\sqrt{2}¡Á5\sqrt{5}}$=$\frac{3\sqrt{10}}{10}$£¬
´Ó¶ø sin¡ÏOAC=$\sqrt{1-\frac{9}{10}}$=$\frac{\sqrt{10}}{10}$£®
ÔÚ¡÷AOMÖУ¬ÓÉÕýÏÒ¶¨Àí£¬µÃ£ºOM=$\frac{OAsin¡ÏOAM}{sin£¨45¡ã-¡ÏOAM£©}$=$\frac{20\sqrt{2}¡Á\frac{\sqrt{10}}{10}}{\frac{\sqrt{2}}{2}£¨\frac{3\sqrt{10}}{10}-\frac{\sqrt{10}}{10}£©}$=20£¬
ÓÉÓÚOE=27.5£¾40=OM£¬ËùÒÔµãMλÓÚµãOºÍµãEÖ®¼ä£¬ÇÒME=OE-OM=7.5£®
¹ýµãE×÷EH ABÓÚµãH£¬ÔòEHΪµãEµ½Ö±ÏßABµÄ¾àÀ룮
ÔÚRt¡÷EHMÖУ¬EH=EM•sin¡ÏEMH=EM•sin£¨45¡ã-¡ÏOAC£©=7.5¡Á$\frac{\sqrt{5}}{5}$=$\frac{3\sqrt{5}}{2}$£¼3.5£®
ËùÒÔ¸Ã×ÔÐгµÊÖ»á½øÈë½µÓêÇø£®
µãÆÀ ±¾Ì⿼²éÁËÕýÏÒ¶¨ÀíºÍÓàÏÒ¶¨ÀíÒÔ¼°½âÈý½ÇÐεÄÓйØÖªÊ¶£¬ÊôÓÚÖеµÌ⣮
| A£® | -6£¨1-3-8£© | B£® | $\frac{1}{9}£¨1-{3^{-8}}£©$ | C£® | 3£¨1-3-8£© | D£® | 3£¨1+3-8£© |
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |