搜索
题目内容
如图,在四棱锥
中,侧棱
底面
,底面
为矩形,
为
上一点,
,
.
(I)若
为
的中点,求证
平面
;
(II)求三棱锥
的体积.
试题答案
相关练习册答案
(I)详见解析;(II)三棱锥
的体积为
.
试题分析:(I)要证线面平行,先构造面外线平行于面内线;(II)求三棱锥的体积关键是选择适当的底面,以便于求高为标准,为此要先考察线面垂直.
试题解析:(I)若
为
的中点,
为
上一点,
,故
,
都是线段
的三等分点.
设
与
的交点为
,由于底面
为矩形,则
是
的中位线,故有
,而
平面
,
平面
内,故
平面
.
(II)由于侧棱
底面
,且
为矩形,故有
,
,
,故
平面
,又因为
,
,所以三棱锥
的体积
.
练习册系列答案
资源与评价黑龙江教育出版社系列答案
课时全练讲练测达标100分系列答案
点金训练精讲巧练系列答案
火线100天中考滚动复习法系列答案
新课堂同步学习与探究系列答案
优等生单元期末冲刺100分系列答案
绿色指标自我提升系列答案
支点系列答案
新课程资源与学案系列答案
初中复习与能力训练系列答案
相关题目
如图,四棱柱
的底面
是平行四边形,且
,
,
,
为
的中点,
平面
.
(Ⅰ)证明:平面
平面
;
(Ⅱ)若
,试求异面直线
与
所成角的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试求二面角
的余弦值.
如图,在四棱锥
中,侧面
底面
,
,
为
中点,底面
是直角梯形,
,
,
,
.
(1) 求证:
平面
;
(2) 求证:平面
平面
;
(3) 设
为棱
上一点,
,试确定
的值使得二面角
为
.
如图所示,AC为
的直径,D为
的中点,E为BC的中点.
(Ⅰ)求证:AB∥DE;
(Ⅱ)求证:2AD·CD=AC·BC.
如图,六棱锥
的底面是边长为1的正六边形,
底面
。
(Ⅰ)求证:平面
平面
;
(Ⅱ)若直线PC与平面PDE所成角为
,求三棱锥
高的大小。
如图1,在直角梯形
中,AD//BC,
=90
0
,BA="BC" 把ΔBAC沿
折起到
的位置,使得点
在平面ADC上的正投影O恰好落在线段
上,如图2所示,点
分别为线段PC,CD的中点.
(I) 求证:平面OEF//平面APD;
(II)求直线CD
与平面POF;
(III)在棱PC上是否存在一点
,使得
到点P,O,C,F四点的距离相等?请说明理由.
下列命题正确的是( )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱.
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.
C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.
D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.
在直三棱柱
中,
(1)求异面直线
与
所成角的大小;
(2)求多面体
的体积。
已知四面体ABCD中,AB=AD=6,AC=4,CD=2
,AB⊥平面ACD,则四面体 ABCD外接球的表面积为( )
A.36π
B.88π
C.92π
D.128π
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案