题目内容
已知cos(α-
)=-
,sin(β-
)=
,且
<α<π,0<β<
,求cos
.
| β |
| 2 |
| 4 |
| 5 |
| α |
| 2 |
| 5 |
| 13 |
| π |
| 2 |
| π |
| 2 |
| α+β |
| 2 |
考点:两角和与差的余弦函数
专题:三角函数的求值
分析:由α与β的范围求出α-
与β-
的范围,利用同角三角函数间的基本关系求出sin(α-
)与cos(β-
)的值,原式中的角度变形后,利用两角和与差的余弦函数公式化简,将各自的值代入计算即可求出值.
| β |
| 2 |
| α |
| 2 |
| β |
| 2 |
| α |
| 2 |
解答:
解:∵
<α<π,0<β<
,
∴
<
<
,0<
<
,即-
<-
<-
,-
<-
<0,
∴
<α-
<π,-
<β-
<
,
∵cos(α-
)=-
,sin(β-
)=
,
∴sin(α-
)=
=
,cos(β-
)=
=
,
则cos
=cos[(α-
)+(β-
)]=cos(α-
)cos(β-
)-sin(α-
)sin(β-
)=
×
-
×
=
.
| π |
| 2 |
| π |
| 2 |
∴
| π |
| 4 |
| α |
| 2 |
| π |
| 2 |
| β |
| 2 |
| π |
| 4 |
| π |
| 2 |
| α |
| 2 |
| π |
| 4 |
| π |
| 4 |
| β |
| 2 |
∴
| π |
| 4 |
| β |
| 2 |
| π |
| 2 |
| α |
| 2 |
| π |
| 2 |
∵cos(α-
| β |
| 2 |
| 4 |
| 5 |
| α |
| 2 |
| 5 |
| 13 |
∴sin(α-
| β |
| 2 |
1-(-
|
| 3 |
| 5 |
| α |
| 2 |
1-(
|
| 12 |
| 13 |
则cos
| α+β |
| 2 |
| β |
| 2 |
| α |
| 2 |
| β |
| 2 |
| α |
| 2 |
| β |
| 2 |
| α |
| 2 |
| 5 |
| 13 |
| 12 |
| 13 |
| 3 |
| 5 |
| 5 |
| 13 |
| 35 |
| 65 |
点评:此题考查了两角和与差的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.
练习册系列答案
相关题目