题目内容
已知椭圆C:
+
=1(a>b>0)的焦距为4,且与椭圆x2+
=1有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同的两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
(1)
+
=1;(2)(-∞,
).
试题分析:(1)求出已知椭圆离心率,结合焦距2c=4,可得a,b;(2)联立方程组,依据点在圆内部列出关系式求解.
试题解析:(1)∵椭圆C的焦距为4,∴c=2.
又∵椭圆x2+
∴椭圆C的标准方程为
(2)设直线l的方程为y=kx+1,A(x1,y1),B(x2,y2),
由
由(1)知椭圆C的右焦点F的坐标为(2,0),
∵右焦点F在圆的内部,∴
即x1x2-2(x1+x2)+4+k2x1x2+k(x1+x2)+1<0.∴(1+k2)x1x2+(k-2)(x1+x2)+5
=(1+k2)·
经检验,当k<
练习册系列答案
相关题目