题目内容
20.已知数列{an}等差数列,a10=10,其前10项和S10=60,则其公差d=( )| A. | -$\frac{2}{9}$ | B. | $\frac{2}{9}$ | C. | -$\frac{8}{9}$ | D. | $\frac{8}{9}$ |
分析 利用等差数列通项公式、前n项和公式列出方程组,能求出首项和公差.
解答 解:∵数列{an}等差数列,a10=10,其前10项和S10=60,
∴$\left\{\begin{array}{l}{{a}_{10}={a}_{1}+9d=10}\\{{S}_{10}=10{a}_{1}+\frac{10×9}{2}d=60}\end{array}\right.$,
解得${a}_{1}=2,d=\frac{8}{9}$.
故选:D.
点评 本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
10.函数f(x)=lnx与函数g(x)=ax2-a的图象在点(1,0)的切线相同,则实数a的值为( )
| A. | 1 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{2}$或-$\frac{1}{2}$ |
11.数列{an}满足a1=2,an+1=$\frac{1}{{1-{a_n}}}(n∈{N^+})$,则a2017=( )
| A. | -2 | B. | -1 | C. | 2 | D. | $\frac{1}{2}$ |
8.己知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一个焦点与抛物线y2=8x的焦点重合,则a=( )
| A. | $\sqrt{19}$ | B. | $\sqrt{13}$ | C. | 2 | D. | 1 |
5.已知椭圆C:$\frac{{x}^{2}}{2}$+y2=1的上、下顶点分别为M,N点,P在椭圆C外,直线PM交椭圆于点A,若PN⊥NA,则点P的轨迹方程是( )
| A. | y=x2+1(x≠0) | B. | y=x2+3(x≠0) | ||
| C. | y2-$\frac{{x}^{2}}{2}$=1(y>0,x≠0) | D. | y=3(x≠0) |
10.下列说法正确的是( )
| A. | 命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,x2+x+1>0” | |
| B. | 命题“若x2-3x+2=0,则x=1或x=2”的否命题是:“若x2-3x+2=0,则x≠1或x≠2” | |
| C. | 直线l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要条件是$a=\frac{1}{2}$ | |
| D. | 命题“若x=y,则sinx=siny”的逆否命题是真命题 |