题目内容

10.在等比数列{an}中,${a_2}=4{,^{\;}}{a_5}=32$.
(1)求数列{an}的通项公式;
(2)若${a_3}{,^{\;}}{a_5}$分别为等差数列{bn}的第4项和第16项,求数列{bn}的前n项和Sn

分析 (1)设等比数列{an}的公比为q,由${a_2}=4{,^{\;}}{a_5}=32$.可得$\left\{\begin{array}{l}{{a}_{1}q=4}\\{{a}_{1}{q}^{4}=32}\end{array}\right.$,解出即可得出.
(2)b4=a3=8,b16=a5=32,可得$\left\{\begin{array}{l}{{b}_{1}+3d=8}\\{{b}_{1}+15d=32}\end{array}\right.$,解得b1,d.利用求和公式即可得出.

解答 解:(1)设等比数列{an}的公比为q,∵${a_2}=4{,^{\;}}{a_5}=32$.∴$\left\{\begin{array}{l}{{a}_{1}q=4}\\{{a}_{1}{q}^{4}=32}\end{array}\right.$,解得a1=q=2.∴an=2n
(2)b4=a3=8,b16=a5=32,∴$\left\{\begin{array}{l}{{b}_{1}+3d=8}\\{{b}_{1}+15d=32}\end{array}\right.$,解得b1=d=2.
∴Sn=2n+$\frac{n(n-1)}{2}×2$=n2+n.

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网