题目内容

在R上的可导函数f(x)=
1
3
x3+
1
2
ax2+2bx+c,当x∈(0,1)时取得极大值,当x∈(1,2)时取得极小值,则
b-2
a-1
的范围是______.
f′(x)=x2+ax+2b,由函数当x∈(0,1)时取得极大值,当x∈(1,2)时取得极小值得:
f′(0)=2b>0;f′(1)=1+a+2b<0;f′(2)=4+2a+2b>0;
所以
b-2
a-1
∈(
1
4
,1)
故答案为(
1
4
,1)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网